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Exercise 8.1

1 Solution

a+b

+b
(@) IFO<a<b, then 2a<a+b, a< , and a+b<2b,—q—2—<b. Hence

a+b
a<

< b with equality iff a=5.

(b) IFO<a<bh, then a*<ab, a<+ab,and ab<b?, Jab <b. Hence
a <+ab < b with equality iff a=0>b.

2 Solution
(a) It is clear that (a+b)? =(a—b)* +4ab=> (a+b)? >4ab (equality iff a=bh), since

(a~b)220.Then, if a>0, b>0, we get

a+b

> «/E (equality iff a =b).

(b) If a>0, b>0,using 2ab< a* +b*, we get

a’+b?

2
(a+b)? =a*+2ab+b* <2a” +2b*, and (a;—b) < 5

2 2
Hence a;—b<1/a ;b (equality iff a=b).

3 Solution

Consider
(ac —bd)* - (a* - b*)(c* - d*) = a’d* — 2acbd + b*d* = (ad — bc)* 2 0.
Hence (a* - b*)(c* —d*) < (ac — bd)* with equality iff ad = bc.
Consider
(@ -b) —(a*-b")(a* -b*)=a®-2a°D’ + b® ~ a® + a®h* + a*b* — b® = (ab® — a’h)* 2 0.H

ence (a* —b*)(a* —b*) < (@’ - b’)* with equality iff a=b.
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4 Solution

If a>0,itis easily seen that

2 2 2
(a—-l—) =(a+—1—) —4a120=>(a+l) 24=>a+122
a a a a a
with equality iff a=1.IF a>0, b>0 and ¢ > 0, using this inequality, we have

b
@rbroE iy s o141+ @+ D+ B+ E+ Y 2342424220,
a b ¢ b a c b a c

Hence

(a+b+c)(—1-+—1-+l)29
a b ¢

with equality iff a=b=c.If we muitip]y the last inequa]i;y by abc , we deduce that
(a+b+c)ab+bc+ca)29abc .
Since
| (a+b+c)ab+bc+ca)=a’b+ ab® + a*c + b*c + bc* + ac® + 3abc,
we get
a’b+b*c+cta+ ab* + bc® + ca® = 6abc

with equality iff a=b=c.

5 Solution
(a) It is easily seen that
(a+b+c)a*+b*+c*—ab—bc—ca)=a’ +ab* + ac® — a*b- abc — ca*
. ba*+b* +bc® - ab® —b*c — abc + ca® + b’c +c* —abc - bc* — cla=
. =a’+b +c’—3abc.
(b) Itis clear that

a’>+b*22ab,
bt +c? > 2bc,

a’+c* > 2ac.
By addition
2(a* +b* +c*)22(ab+bc +ca).
Hence a*+b* +c¢* = ab + bc + ca with equality iff a=b=c. Since a+b+c is positive,

and
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a*+b*+c*—ab—bc—ca20,
the right-hand side of identity in (a) is not negative. Hence
@’ +b* + ¢ 23abc (equality iff a=b=c).
Since (x+y)’ = x* +3x%y+3xy’ + y°, we have
(a+b+c) =a*+b +c +3a’b+3ab® + 3a’c +3b*c + 3ac® + 3bc* + 6abc .
Using the iequality from Example 4

a’b+ b +c*a+ ab® + be? + ca® 2 6abc

and

a’ +b*+c’ 23abc,
we obtain

(a+b+c)* 227abc.
Hence

(‘”—;’*C) >3/abe (equality iff a=b=c).

After the substitution a — % ,b—> P— , C— £ , the last inequality becomes
c a

£+2+£23 (equality iff a=b=c).
b ¢ a

6 Solution

(a) It is easily seen that

(a+b)? > 4ab,

(b+ c)2 24bc,

(a+ c)2 24ac,
since (a+ b)2 =(a- b)2 +4ab=> (a+b)* > 4ab (equality iff a = b). By multiplication,
we get

(a+b)2(b+c)*(c+a)? 24%a%bc?.

Hence (a+b)(b+c)(c+a)=8abc with equality iff a=b=c.
() IFa>0, b>0, c¢>0 and d >0, by using the inequality

-(-g%)i-—QZ’w/abc (equality iff a=b=c)
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(see Example 5) with respect to the sums in the expression

(b+c+d)a+c+d)a+b+d)a+b+c),
we have
a+b+c2Rabc,
a+b+d2Rabd
a+c+d2Racd,
b+c+d23/bed .
By multiplication, we get
(b+c+d)a+c+d)a+b+d)a+b+c)=8labed
with equal.ity iffa=b=c=d.

7 Solution
(@) IFa>0, b>0 and a+b=1,itis easily seen that

a+b_>_ 4 =>—1—+12i.
ab a+tb a b t

(a+b)Y>4ab=

Hence 1 +% 2 f:— with equality iff a=b.
a

(b) Consider the following expression:

1 1 1 1 a b, a* b
+b) (S +—5)=(a* +2ab+ BN +—) = 242~ +2) +— + — .
(a )(a2 bz) (a° +2a )(a2 bz) (b+a)+b2+a2

. . ) 1
By using the inequality a +—>2 (see Example 4) with respect to the right-hand side, we
: a
get
2, 1 1
(a+b) (—2+F)22+4+2=8
a

If a+b=1, hence

1 1 _ 8 s
74.? zt—z- (equality iff a=b).

8 Solution

@) IFa>0,b>0,c¢c>0 and a+b+c =1, using the inequality
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(a+b+c)(—1—+—1-+l)29
a b ¢

(see Example 4), we get

-l—+l+-1-29(equality iff a=b=c=—1-)-
a b ¢ 3

Further, consider

2 2 2
i+_1_+_1;=(b0) +(ac) +(ab)’

2
a b ¢ a’b*c?

By using the inequality x*+ y*+z?2xy+ yz+2zx for x>0, y>0, z> 0 (see Example 5
(b)) with respect to the numerator of the right-hand side of the last expression, we obtain

1 1 1 _ a*bc+blac+ctab abc(a+b+c) 1
S+=+52 = =

a b ¢ a’b*c? a’b*c? abc

The inequality
_(figﬂ'i) >3/abc (equality iff a=b=c)
(see Example 5 (b)) in the case a+ b+ c =1 takes the form

I >3 or —1—227.
abc abc

Hence

1 1 1 - 1
:2-+Zz—+—c?_>_27(equahtylffa=b=c=§).

It was shown earlier that

l+l+129(equa1ityiffa=b=c=l),or ng.
a b ¢ 3 abc

In view of abc 20, we obtain ab+bc + ca 29abc (equality iff a=b=c= —;— ). Let us

consider the expression
(1-a)1-b)Y(1—-c)-8abc=1~-a—b—c+ab+bc+ca—abc—8abc =
=ab+bc+ca-9abc .

If we take into account the last inequality, we get

(1-a)1-b)1-c)28abc (equality iff a=b=c= -;— ).
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9 Solution
(@) Let f(x)=e*—1-x.Itis clear that f’(x)=e*—1>0 for x>0. Thus, f(x) is a not
decreasing function for x > 0. Function " f(x) has an absolute minimum of O when x=0.

Hence, for x>0 f(x)>0,and e* >1+x for x>0.

. . . 3 .
(b) Show that x > 3SIMX_ gor x> 0. Let us consider a function f(x)=x———nX 1
2+cosx 2 +cosx
is clear that
, 3cosx(2+cosx)+3sin’ x 3+6¢c0s x
f (x) =1- 3 =]- 5
(2+cosx) (2+cosx)

_1+cos’x—2cosx _ (1—cosx)? S
(2+cos x)* (2+cosx)®

Thus, f(x) is a not decreasing function for x>0. Function f(x) has an absolute
minimum of O when x=0. Hence, for x>0 f(x)>0, and

3sin x forx>0.

2+cosx

10 Solution
(a) Let us prove that for ¢ >0

1—t<—1——<1—t+t2.
1+1¢

First, it is easily seen that (1—¢)(1+¢)=1-¢><1 for t>0, and

1—t<L for t>0.
1+1¢

Further, it is clear that > =(1—¢+2)(1+¢)—1>0 for ¢ > 0. Thus, we have

2

—1—<1—t+t for t>0.

1+1¢

Hence, we arrive to the desired result

l—f<—ciot+£ for 1>0.
1+1¢
By integrating the last inequality between 0 and x, we derive

i (L P
{(1+t)dt<£1+t<£(1 t+1)dr,
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x—lxz<1n(1+x)<x—lx2+lx3 for x>0.
2 2 3
(b) Let us prove that for ¢t >0

1-12< <l—12+14,

t2
First, it is easily seen that (1—¢*)(1+¢*)=1-¢*<1 for t>0, and

1-12< fort>0.

o
Further, it is clear that t* =(1— 2 +¢*)(1+¢*)—-1> 0 for ¢t > 0. Thus, we have

| > <1-12+1¢* fort>0.
1+1¢

Hence, we arrive to the desired result

<l-f*+¢* fort>0.

1
1-12 <
1+12

By integrating the last inequality between 0 and x, we derive
dt
1+1*

j(l-t’)dm} <j|£(l—t2+t4)dt,
0 0 0

x—-1—x3<tan"x<x—lx3+lx5 for x>0.
3 3 5

11 Solution
It is easily seen that for 0 <t <1 we have

1 1 1-¢ 1 1

= >0, —
1+t 2 2(1+1) 2 1+:
1 t

141 (41

b4

) 1 -

1+t
Hence,

l<L<l for O<t<1.
2 1+t
By integrating this inequality between 0 and u, we deduce that for 0 < u < 1
ljdt<j—ldt<jdt,

§<ln(l+u)<u.
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12 Solution .
It is easily seen that for 1 >0 we have

1 1 t 1 1

- 7 7>0, 2 <7 >
1+t (+1) (1+1 A+ 1+¢
1 t : 1
l—-—= >0, ——
1+ (1+1) 1+¢
Hence,
1

<1l fort>0.

<_
A+ 1+1

By integrating this inequality between 0 and u, we deduce that for 0< u <1

u 1 u 1 u
;[(1+t)2dt<;[mdt<;[dt’

--L.<ln(l+u)<u.
1+u
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Exercise 8.2

1 Solution ,
Define the statement S(n): 2-145-2410-3!+K +(n*+Dnl=n(n+1)! for n>1.

Consider S(1): n=1, 2-1!'=1-2!. Hence S(1) is true.
Let k be a'positive integer. If S(k) is true, then
2-145-2410- 34K +(k* + Dk != k(k +1)!.
Consider S(k+1).If S(k) is true, we get
214 5-2410- 314K +(k* + Dk H ((k +1)* + 1) (k + 1) = k(k+ DY (K + 12+ D(k+1)!=
=(k+ DIk +k+1D+1) = (k+ D1k +1)(k+2) = (k+2)!(k+1).
Hence for all positive integers k, S(k) true implies S(k +1) true. But S(1) is true,
therefore by induction, S(n) is true for all positive integers n:

2-145-2410-314+K +(n* + Dn!=n(n+1)! for n21.

2 Solution

Define the statement S(n): l—+£+i+K " —1- for n2>1.
2! 31 4! (n+1)! (n+1)!
. 1 1 1 .
Consider S(1): n=1, —=1-—=—. Hence S(1) is true.
20 20 2
e . 1 2 3 k 1
Let k be a positive integer. If S(k) is true, then —+—+—+K + 1

21 31 41 k4D (k+ D!
Consider S(k+1).If S(k) is true, we get
2 3 k k+1 1 k+1
=1 +

—+K + + =1- =
2! 3! 4! (k+1)! (k+2)! (k+1)! (k+2)!

1 k+2—-(k+1) —1- 1
(k+2)! (k+2)!

Hence for all positive integers k, S(k) true implies S(k +1) true. But S(1) is true,
therefore by induction, S(»n) is true for all positive integers n:

123+K+n 1 1

—t— =]- for n>1.
2! 31 4 (n+1)! (n+1)!
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10

3 Solution

Define the statement S(n): u, = 3.- 2"+1 for n21.
Consider S(1): n=1, % =3-2+1=7= S(1) istrue.
Let k be a positive integer. If S(k) is true, then u, =3-2* +1 for k >1. Consider
S(k+1).If S(k) is true, we get

| Uy, =2 —1=2-3-2 +1)=1=3-25" 41,
Hence for all positive integers k, S(k) true implies S(k +1) true. But S(1) is true,
therefore by induction, S(n) is true for all positive integers n:

u =3-2"+1 for n21.

4 Solution

Define the statement S(n): u, =2+3" for n2>1.
Consider S(1): n=1, u =2+3=5= S(1I) is true.
Consider S(2): n=2, wu,=2+3*=11= S(2) is true.
Let k be a positive integer, k > 2. If S(n) is true for all integer n < k , then
u,=2+3", n=123K k.

Consider S(k+1).If S(n) istrue forn=1,2,3K ,k, we get

Uy =4u, —3u,_,=42+3)-32+3"H)=2+4-3t-3.3"" =

=2+3%,

Hence for k>2, S(n) true for all positive integers n < k implies S(k +1) is true. But
S(1), S(2) are true. Therefore by induction, S(n) is true for all positive integers n:

u,=2+3" for nz1.

5 Solution

Define the statement S(n): u, =(n+3)2" for n21.
Consider S(1): n=1, u=4-2=8= S(1) is true.
Consider S(2): n=2, w,=5-4=20= S(2) is true.
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Let k be a positive integer, k > 2. If S(n) is true for all integer n <k, then
u =(n+3)2", n=123K,k.
Consider S(k+1).If S(n) is true forn =1,2,3,K ,k, we get
U, =du, —du_, =4(k+3)2" —4((k—1)+3)2"" =4k2" +12-2* —4k2""' 8.2 =
=2"(k +4).
Hence for k=2, S(n) true for all positive integers n < k implies S(k +1) is true. But
S(1), S(2) are true. Therefore by induction, S(n) is true for all positive integers n:

u,=(n+3)2" for n21.

6 Solution
Define the statement S(n): u, =2"+5" for n21.
Consider S(1): n=1, ©=2+5=7= §(1) is true.
Consider S(2): n=2, u,=2+5" =29=> S(2) is true.
Let k be a positive integer, k 2 2. If S(n) is true for all integer n < k, then

u,=2"+5", n=123K k.
Consider S(k+1).If S(n) istrue forn=1,23K ,k, we get

Uy =Tu, —10u,_, = 7(é* +5%)-10Q2"" +5¢ ") =
=7-2"+7.5" -5.2 =2.5F =¥ 4 501

Hence for k22, S(n) true for all positive integers n < k implies S(k +1) is true. But
S(1), S(2) are true. Therefore by induction, S(n) is true for all positive integers n:

u =2"+5" for n21.

7 Solution

Define the statement S(n): wu,=2-3"-1 for n21.
Consider S(1): n=1, 1 =2-3-1=5= 5() is true.

Let k be a positive integer. If S(k) is true, then u, =2-3* -1 for k >1. Consider

S(k+1).If S(k) is true, we get

Uy =31, +2=3.2-3*=1+2=2.3""_1.
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Hence for all positive integers k, S(k) true implies S(k +1) true. But S(1) is true,
therefore by induction, S(n) is true for all positive integers n:

=2-3"~1 for n21.

8 Solution

Define the statement S(n): u,=5"-3 for n21.
Consider S(1): n=1, u=5-3=2= 85(1) is true.
Consider S§(2): n=2, u,=5"~3=22= 5(2) is true.
Let k be a positive integer, k 2 2. If S(n) is true for all jnteger n <k, then
u, =5"-3, n=123K ,k.
Consider S('k +1).If S(n) istrue forn=123K ,k, we get
oy, = 6u, —Su,_, = 6(5F =3)=5(5" -3) =

=6-5-5"-18+15=5"'-3.

Hence for k>2, S(n) true for all positive integers n < k implies S(k +1) is true. But

SA), S2) aré true. Therefore by induction, S(n) is true for all positive integers n:

u =5"-3 for n21.

9 Solution
Define the statement S(n): u,=(n-1)-3" for n21.
Consider S(1): n=1, u =0= 5(1) is true.
Consider S§(2): n=2, u,=1-3=9=5(2) is true.
Let k be a positive integer, k =2. If S(n) is true for all integer n <k, then
u,=(n-1-3", n=1,23K,k.
Consider S(k+1).If S(n) is true forn=1,2,3,K ,k, we get
u,,=6u - ,=6(k-1)-3*-9(k-1)~1)-3"" =
=k3*".
Hence for k22, S(n) true for all positive integers n < k implies S(k +1) is true. But

S(1), S(2) are true. Therefore by induction, S(n) is true for all positive integers n:
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u,=(n-1)-3" for n=1.

10 Solution
Define the statement S (n)': u,=5"-3" for n=1.
Consider S(1): n=1, u=5-3=2= 5(1) is true.
Consider §(12): n=2, wu,=5"-3"=16= S(2) is true.
Let k be a positive integer, k 2 2. If S(n) is true for all integer n <k, then

u,=5"-3, n=123K k.
Consider S(k+1).If S(n) is true forn=1,2,3,K ,k, we get

u,,, =8u, —15u,_, =8(5* -3*)-15(5"" -3*") =
=85 -3.5" -8.3* +5.3k =5*1 34,

Hence for k=2, S(n) true for all positive integers n <k implies S(k+1) is true. But
S(1), S(2) are true. Therefore by induction, S(n) is true for all positive integers n:
u =5-3 for n>1.

n

11 Solution

It is easily seen that

=9 —8(n+1)-9=9-9""-8n—-17=
=9(9"™" -8n-9)+72n+81-8n—17=9u_ +64n+64.

u

For n21 let the statement S(n) be defined by:  «, is divisible by 64.
Consider S(1): n=1, u =64= S5(1) istrue, since u is divisible by 64.
Let k be a positive integer. If S(k) is true for all integer k, then u, =64- M for some
integer M. Consider S(k+1).If S(k) is true, we get

U, =%, +64k +64=9-64M + 64k +64 =64(9M +k +64).
Since 9M + k + 64 is integer, we see that u,,, is divisible by 64. Hence for all positive
integers k, S(k) true implies S(k+1) is true. But S(1) is true. Therefore by induction,

S(n) is true for all positive integers n: wu, is divisible by 64 for n=1.
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12 Solution
It is easily seen that

U, =5 +3(n+1)-1=5-5"+3n+2=
=25(5" +3n-1)=75n+25+3n+2=25u ~72n+27.

For n21 let the statement S(n) be defined by:  u, isdivisible by 9.
Consider S(1): n=1, u= 52 +3-1=27= S(1) is true, since u, 1isdivisible by 9.
Let k be a positive integer. If S(k) is true for all integer &, then 4, =9- M for some
integer M. Consider S(k+1).If S(k) is true , we get

Upy =25u, — T2k +27=25-9M -T2k +27=9(25M -8k +3).
Since 25M -8k + 3 is integer, we see that u,_, is divisible by 9. Hence for all positive
integers k, S.(k) true implies S(k+1) is true. But S(1) is true. Therefore by induction,

S(n) is true for all positive integers n: u, is divisibleby 9 for n>1.

13 Solution
It is eésily seen that

Uy, =243 = (2" 3 2.3 1 9.3 =
=2u, +7-3"".

For n21 let the statement S(n) be defined by: u, is divisible by 7.
Consider S(1): n=1, u=8+27=35=7-5= S(1) is true, since u, is divisible by 7.
Let k be a positive integer. If S(k) is true for all integer k, then 4, =7- M for some
integer M. Consider S(k+1).If S(k) is true , we get

U =2u, +7-3*"=2.TM +7-33*" =72 M +3**).
Since 2M +3™* is integer, we see that u,,, is divisible by 7. Hence for all positive integers

k, S(k) true implies S(k+1) is true. But S(1) is true. Therefore by induction, S(n) is

true for all positive integers n: u, is divisible by 7 for n2>1.
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14 Solution
It is easily seen that

l — 34(n+l)+2 +2 '43(n+l)+l = 34n+6 + 2. 43n+4 -
= 34(34n+2 +2-43n+])_34 _2.43n+| +2 ‘43n+4 = 81un _43n+l 34

u

For n21 let the statement S(n) be defined by: u, is divisible by 17.

n

Consider S(l) cn=1, u =3%42.4*=1241=17-73= S(1) is true, since u is
divisible by 17.

: Let k be a positive integer. If S(k) is true for all integer k, then &, =17- M for some
integer M. Consider S(k+1).If S(k) is true , we get

Uy, =8lu, —4*".34=81-17- M —4*".2.17=17(81M —-2-4**).

Since 81M -2-4** is integer, we see that u,,, is divisible by 17. Hence for all positive
integers k, S(k) true implies S(k +1) is true. But S(1) is true. Therefore by induction,

S(n) is true for all positive integers n: u, is divisible by 17 for n2>1.

15 Solution
Let us introduce f(n)=7"+11". It is easily seen that

f(n+2)=7" 411" =74(7"+11")=49-11" +121-11" =49 f (n) + 72-11"
For n=13,5K let the statement S(n) be defined by:  f(n) is divisible by 9 for odd
nx1.
Consider S(1): n=1, f(1)=7+11=18=9-2= S(1) is true, since f(1) | is divisible
by 9.
Let k be a positive odd integer. If S(k) is true for all integer k, then f(k)=9-M for
some integer M. Consider S(k+1).If S(k) is true, we get

fk+2)=49f(k)+11*-72=49-9M +11*-8-9=9(49- M +11* -.8).

Since 49M +8-11* is integer, we see that f(k+2) is divisible by 9. Hence for all odd
positive integers k, S(k) true implies S(k+1) is true. But S(1) is true. Thefefore by
induction, S(n) is true for all odd positive integers n: 7" +11" is divisible by 9 for odd

n2l.

7SD Solutions Series




B S e R

16

16 Solution .

Let us introduce f(n)=3"+7". Itis easily seen that
f(n+2)=3"24+7"2=93"+7")-9-7"+49-7" =9f(n)+40-7"

For n=13,5K letthe statement S(n) be defined by:  f(n) is divisible by 10 for odd

n21.

Consider S(1): n=1, f(1)=10= S(1) is true, since f(1) isdivisible by 10.

Let k be a positive odd integer. If S(k) is true for all integer k, then f(k)=10-M for

some integer M . Consider S(k+1).If S(k) istrue, we get
fk+2)=9f(k)+7*-40=9-10M +7"-4.10=10(9- M +7* - 4).

Since M +<;-7" is integer, we see that f(k+2) is divisible by 10. Hence for all odd

positive integers k, S(k) true implies S(k+1) is true. But S(1) is true. Therefore by

induction, S(n) is true for all odd positive integers n: 3" +7" is divisible by 10 for odd

n21.

17 Solution
It is easily seen that

U, =3"-2n+1)-1=33"~2n-1)+6n+3-2n-3=
=3u, +4n.

For n>2 let the statement S(n) be definedby: u,>0 for n>2.
Consider S(2): n=2, u,=3"~2-3-1=20>0=5(2) is true. Let k be a positive
integer. If S(k) is true for all integer k, then u, >0 for k22. Consider S(k+1), k>2.
If S(k) is true, we get

U, =3 +4-k>0.
Hence for all positive integers k, S(k) true implies S(k+1) is true. But S(2) is true.

Therefore by induction, S(n) is true for all positive integers n: u, =3" —2n-1>0 for

n=2.
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18 Solution

It is easily seen that

u, =5"-4n+1)-1=55"-4n-1)+20n+5-4n-5=
=5u, +16n.

For n22 let the statement S(n) be definedby: u, >0 for n=>2.
Consider S(2): n=2, u, =5-4.3-1=112>0= 5(2) is true. Let k be a positive
integer. If S(k) is true for all integer k, then , >0 for k=2. Consider S(k+1), k>2.
If S(k) istrue , we get

U, =5u, +16-k>0.
Hence for all positive integers k, S(k) true implies S(k+1) is true. But S(2) is true.

Therefore by induction, S(n) is true for all positive integers n: wu, =5"—4n—1>0 for

n

nz2.

19 Solution
(@) For n=123K let the statement S(n) be defined by: u, <2 for n2=1.

Consider S(1): n=1, u=1<2=S5(1) is true. Let k be a positive integer. If S(k) is

true for all integer k, then u, <2 for k 21. Consider S(k+1).If S(k) is true , we get
e =20 =2 <23 =2,

because of JZ <2, and u,,; <2 . Hence for all positive integers k, S(k) true implies

S(k+1) is true. But S(1) is true. Hence by induction, S(n) is true for all positive integers

n: u <2 for n21.

(b) For n=1,23,K let the statement S(n) be defined by: u, <u

n+l

for n2>1.
Consider S(1): n=1, u <u, sincey, =1,u, =+/2. Hence S(1) is true. Let k be a
positive integer. If S(k) is true for all integer k, then u, <wu,,, for k21. Consider

S(k+1).If S(k) is true , we get

U, = \/2“1: <2y = Uy,
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because of J;: <,/uk+1 , and u,,, <u,,,. Hence for all positive integers k, S(k) true
implies S(k+1) is true. But S(1) is true. Hence by induction, S(n) is true for all positive

integers n: u, <u,, for n21.

20 Solution
(a) For n=1,23K let the statement S(n) be definedby: u, <3 for n=>1.

Consider S(1) s n=l, u,=1<3=>5(1) is true. Let k be a positive integer. If S(k) is
true for all integer k, then u, <3 for k >1. Consider S(k+1).If S(k) istrue , we get

U, =1/3+2u,‘ <3+2.3<3,

because of y, <3. Hence for all positive integers k, S(k) true implies S(k+1) is true.

But S(1) is true. Hence by induction, S(r) is true for all positive integers n: u, <3 for
nx1.

(b) For n=123K let the statement S(n) be defined by: «, <u,, for n2>1.
Consider S(1): n=1, uw<u, sincey, =1, 1, =‘\/§. Hence S(1) is true. Let k be a
positive integer. If - S(k) is true for all integer k, then u, <u,,, for k>1. Consider

Sk+1).If S(k) istrue , we get

U =342 <J3+2u,, =u,,,
because of u, <u,,,, and we see that u, ., <u,,,. Hence for all positive integers k, S(k)
true implies S(k+1) is true. But S(1) is true. Hence by induction, S(n) is true for all
for n21.

positive integers n: u, <u,

n+t
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Exercise 8.3

1 Solution
(a) In figure 8.1, ABC is a triangle. E and F are the midpoints of A(
BE and CF intersect at G. AG produced cuts BC at D. It is clear th:
medians. Let us use the well-known theorem that three medians of a
single point, which divides each median in accordance with the rela
the top. This point is G, AD is the third median, and BD=CD. H
produced, such that AG=GH. Show that GBHC is a parallelogram,
prove that GB and CH, GC and BH are parallel to each other. Acc

mentioned above we get

19

" and AB respectively.
at BE and CF are two
triangle intersect at a
tion 2:1 starting from
is the point on AGD
To this end we must

ording to the theorem

AG_2 C
GD 1
and, if AG=GH, then GD=%AG=%GH. E
Hence GD =DH, since DH=GH-GD. It is G
easily seen that the triangles GBD and CDH A = B
coincide, since GD=DH, BD=CD, and
Figure 8.1

ZGDB = ZCDH. Hence GB is parallel to CH.

The same goes for the triangles GDC and HDB. Thus CG is parallel
GBHC is a parallelogram.
(b) We have showed above that BD=DC.

2 Solution

to BH. Consequently

(a) In figure 8.2, ABC is a triangle. The internal bisectors of ZABC and ZACB meet at D.

DP, DQ and DR are the perpendiculars from D to BC, AC and
produced cuts AB at C;, and BD produced cuts AC at B,. BB, ist

This means that its points are equidistant with respect to the AB an

The same goes for the points of the bisector CC,, and DQ =DP. He

AB respectively. CD
he bisector of ZABC.
d BC, and DR =DP.
nce DR =DQ.
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(b) As DQ=DR, the points of AD are equidistant

with respect to sides AC and AB of the triangle ABC. A<
Hence AD is the internal bisector of ZCAB. Figure 8.2

3 Solution
(a) In figure 8.3, AB is a chord of a circle. X is a point on AB. XT is a tangent from X to
the circle. It is a well-known theorem that two triangles are similar if two angles of the first
triangle are equal to two angles of the other one. Show that the triangles XAT and XTB are
similar. To this end, let us remember the theorem about an inscribed angle that states: the
inscribed angle ZBAT is equal to the arch length BT measured in degrees divided by two.
For the same reason ZXTB is equal to the arch length BT measured in degrees divided by
two. Hence ZBAT =/XTB. The angle £ZTXA is common for both triangles XAT and
XTB. This way AXAT and AXTB are similar.

(b) Since the triangles XAT and XTB are similar, it

T
follows that the lengths of their sides which correspond X
to LTXA are proportional to each other, that is,
XA _XT A
XT XB'
Hence XA -XB= XT>.
Figure 8.3

4 Solution
(a) In figure 8.4, AB and CD are chords of a circle. AB produced and CD produced meet at
X. Show that- AXAC and A XDB are similar. Let us use the well-

known theorem that states: two triangles are similar if the C

B
corresponding angles are equal to each other. It is clear that ZAXC =
4BXD. ZACD = ZABD, since these two inscribed angles A
correspond to the same arch AD. Each of them equal the arch length D
AD measured in degrees divided by 2. Furthermore, ZCAB = Figure 8.4

ZCDB by the same reason. Hence the corresponding angles for both

triangles are equal to each other, and A XAC and A XDB are similar.
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(b) Since AXAC and A XDB are similar, it follows that the lengths of the sides which

correspond to the same angle are proportional to each other. Hence

%:%:XA-XB=XC-XD.
5 Solution

(a) In figur'é 8.5 a, ABD and AJK are two isosceles
triangles with right angle at A. It is clear that the
triangle AJK can be regarded as the result of rotation
of the isosceles triangle AJ;K; with angle ¢ with
respect to the center A. Hence the triangles ABJ and

ADK coincide, and ZBJA = ZDKA.

Figure8.5a

(b) BJ is produced to meet DK at X. The triangles
ABJ and ADK coincide. Since AJ1 AK and ABLAD, we get

BJ LDK . Hence BX1DK. D XA
(c) In figure 8.5 b, the square ABCD is completed. The angle ’,'II \\\
ZDXB is 90°. Let us consider a circle based on the points A, B, C, ' :'
D. It is clear that X belongs to the circle (£/DXB and ZDAB are “\ ,”I
two inscribed angles based on the arch DB and equal to 90°). € TR
Figure 8.5 b

According to the theorem about an inscribed angle ZBXC is equal
to the arch length BC measured in degrees divided by 2, that is, ZBXC = 90°2=45°.
Hence XC is the bisector of ZDXB.

6 Solution C

(a) In figure 8.6, Two circles with centres O and P and - T

radii r and s (where r <s) respectively touch externally A D ° P
at T. ABC and ADE are common tangents to the circles. E

It is clear that ZABO, ZADO and ZACP, ZAEP are Figure 8.6,

right angles, and OD=0B =1, PE=PC=s. Hence AO
(or AP) is the bisector of ZCAE, and the points O and P lie on this line. The point T also

belongs to the bisector AP, since T lies on the line OP; A, O, T and P are collinear.
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(b) It is easily seen that A AOB and A APC are similar triangles. Hence
OB PC r s
——— ) = e
AO AP A0 AO+r+s

r(r+1)

(AO+r1+s)- r=s-A0O= A0 =
S-T

7 Solution
In A ABC, AB = AC (see figure 8.7). The bisector of

ZABC meets AC at K. The circle through A, B and K
cuts BC at D. Let AABC = 20. The inscribed angles
ZABK and ZKBC are based on the arches AK and
DK being equal to each other as ZABK and ZKBC =

o. (the inscribed angle is equal to the arch length, it B D C
corrésponds, measured in degrees divided by 2). Figure 8.7

Hence AK =DK. Then the inscribed angles ZKBD

and ZDAK are equal to each other as they based on the common arch DK. Thus we get
ZDAK = . The triangle AKD is isosceles since AK =DK . As a result we get ZAKD =
180-20c¢ thus ZDKC =20 =ZACB. Hence the triangle CKD is isosceles and DK=CD.

Finally, we come to the desired result AK=CD .

8 Solution

In triangle ABC, P and Q are points on the sides CA and AB respectively, such that Z/BPC
= ZCQB (see figure 8.8). BP and CQ intersect at K. X and Y are points on CA and AB
respectively, such that AYKX is a parallelogram. It is clear that ZQBK = ZKCP as ZQKB
= /PKC and ZBPC = ZCQB. Then we get arrive at ZBYK = ZKXC, since the lines BY,
YK and KX, XC are parallel to each other.
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Hence the triangles BKY and CKX are similar as they have
two angles which are equal to each other. As a result their

sides are proportional

YK _YB
XK XC°
As AY = XK and YK = AX, we get
AX _YB | AX.XC=AY-YB.
AY XC

Figure 8.8

9 Solution
PQ and RS are two chords of a circle (see Figure 8.9 a). PQ and RS intersect at H. K is a

point such ZKPQ and ZKRS are right angles. Let ZRKH = o. and ZPKH =3, ZHRP =y

and RPH = x. The points K,P,H and R lie on the circle with diameter KH, as the angles
ZKRH and ZKPH are right (see Figure 8.9 b). According to the theorem of the inscribed
angle we get that x=qa, y =P, since ZRPH and ZRKH are based on the common arch
RH. The same holds for ZHRP and ZPKH. On Figure 8.9 a we see that ZPQS and ZPRS
are based on the arch PS, and ZRSQ and ZRPQ are based on the arch RQ. Hence ZPQS =
ZPRS =y =P, ZRSQ = ZRPQ = x = . Since KR is perpendicular to RS and ZRKH =
RSQ = ¢, we find that KH is perpendicular to QS. Otherwise this contradicts the statement

of the equal angles between perpendicular lines.

R R

S P
Figure 89 a Figure 8.9 b
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10 Solution
In figure 8.10, two circles intersect at A and B. The

center C of the first circle lies on the second circle
with center O. P is a point on the first circle and Q is

a point on the second circle such that PAQ is a

straight line. QC produced meets PB at X. Let
ZAOC = o and ZACO = B. It is clear that AAOC

is isosceles, and 2B+0=180°=P+0a/2=90°.

ZAQC and ZAOC are based on the common arch

Figure 8.10

AC. According to the theorem of the inscribed angle
we get LZAQC = o/2. LAPB is based on the arch AB and being equal to 2B if measured in

degrees. Hence ZAPB = f. Thus the sum of the angles ZPQX and ZQPX is equal to
o./ 2+ B =90°. Hence ZPXQ =90°, and QX is perpendicular to PB.
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Diagnostic test 8

1 Solution
It is clear that

a’+b*>2ab.

Hence, if a>0and b> 0, multiplication this inequality on a and b‘1 yields
a’ +ab® 22a’b,
a’b+b’ 2 2ab’.
By addition of these inequalities we come to
a’ +b* + a’b+ab* > 2a’b +2ab>.
Hence

a’ +b* > a’b+ab® (equality iff a=b).

2 Solution
Consider
(@ +B)(c* +d%) - (ac +bd)? = a’c? + ad® + bc? + bd” - a’c* ~ 2abed — bd” =

= a’d? - 2abcd + b*c* =(ad - bc)* 20.

Hence (ac+bd)? < (a* +b*)(c* +d*) with equality iff ad = bc.

(a) Consider a®+b*22ab. By adding a”+b* into both sides of the inequality, we get -
(a+ b)? <2(a* + b?) (equality iff a =b).

(b) It is clear that

(a* +b*)(a* +b*)—(a® +b*)? = a’b* - 2a’°b* + b’a* = a*b*(a’ - 2ab+b*) =
=a’b*(a-b)*20.
Hence

(@ +b*)? <(a* +b*)(a* +b*) (equality iff a =b).

3 Solution
It is clear that (a+ b)? > 4ab (equality iff a = b), since (a + b)? = (a— b)2 +4ab.If a>0

and b>0, we have
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a+b22Jab (equality iff a=b),

a+b

>Jab (equality iff a=b).

(a) Consider

a+b+¢+d
atb+c+d 1 )
4 2
+b c+d

. . .. . a
Using the inequality proved above with respect to > and > we come to

a+b+c'+d > «/E+«/—cg

4 2

Employing the same inequality once again with respect to the right-hand side of the last

inequality, we obtain

M%” > yabcd =4/abed .
Hence a+b+c+d 2 44/(abcd) (equality iff a=b=c=d).

(b) After the substitution a — % ,b— 2 , C—> % , d— -4— the last inequality becomes
_ : c a

ﬁ+2+£+.‘i24 (equality iff a=b=c=d).
c a a

4 Solution

It is easily seen that for 0<t <1

1 1 1-£ 1 1 1 12

—_—= >S0= —< , 1-— = >0= <l.
1412 2 2(1+13) 2 1447 1422 1+ 1+ £
Hence—-<1 12 <1 for 0<t<1. By integrating between 0 and u, we deduce

+1t
u u u
fldt<f dt2<jdt,lu<ln(l+u)<u
02 ol+t" o 2
for O<uc<l.
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5 Solution
Consider S(1):n=1 1-1!=1=2!-1, hence S(1) is true. Let k be a positive integer.
If S(k) is true, then 1-142-2!'+, +k-k!=(k+1)~1. Consider S(k +1).If S(k) is true,

we get
1114 2-2% 3.3+ +k-kH(k+ 1)k +D!=(k+ D=1+ (kK +1)(k +1)!
;(k+1)!(1+k+1)—1=(k+1)!(k+2)—1=(k+2)!—1.

Hence for ajl positive k, S(k) true implies S(k +1) true. But S(1) is true. Hence by
induction, S(n) is true for all positive integers n:

1114224 3-34L +n-n!'=(n+1)-1, n21.

6 Solution
Define the statement S(n): u, =3"-2" for n=>1. Consider
S): n=1, u=3-2"'=1=5Q) is true.
Consider
S(2): n=2, uy=32-22=5=5(2) is true.
Let k be a positive integer, k 22 . If S(n) is true for all integer n < k, then
u,=3"-2", n=123K ,k.

Consider S(k+1).If S(n) is true forn=1,2,3K ,k, we get

Upyy = Sty — 61, =535 —2F)—6(3k 1 =2k 1y=53k _ 2.3k _5.0k 1 3.9k

=3.3k _ 9.9k _ gkl _ok+l
Hence for k=2, S(n) true for all positive integers n < k implies S(k +1) is true. But

S(1), S(2) are true. Therefore by induction, S(n) is true for all positive integers n:

u,=3"-2" for n2x1.

7 Solution

It is easily seen that

U = 5" +12(n+1)-1=5-" +12n = 1)-60n+5+12n+11
=5u, —48n +16.

For n21 let the statement S(n) be defined by:  «, is divisible by 16.

n
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Consider S(1): n=1, 1 =16= S(1) istrue, since u is divisible by 16.
Let k be a positive integer. If S(k) is true for all integer k, then w; =16- M for some
integer M . Consider S(k+1).If S(k) is true , we get

Uy =Suy, —48k +16=5-16M —-3-16k +16 =16(5M -3k +1).
Since 5SM -3k +1 is integer, we see that u,,, is divisible by 16. Hence for all positive
integers k, S(k) true implies S(k +1) is true. But S(1) is true. Therefore by induction,

S(n) is true for ail positive integers n: u, is divisible by 16 for n2>1.

8 Solution

(a) For n=123K let the statement S(n) be defined by: u, <2 for n>1.
Consider S(1): n=1, u =1<2=S(1) is true. Let k be a positive integer. If S(k) is

true for all integer k, then u, <2 for k 21. Consider S(k+1).If S(k) istrue, we get

Uy =2+ U <V2+2=2,
because éf u, <2, and u,,, <2 . Hence for all positive integers k, S(k) true implies
S(k+1) is true. But S(1) is true. Hence by induction, S(n) is true for all positive integers
n: u, <2 for n21.

(b) For n=1,2,3K let the statement S(n) be defined by: u, <u

n+l

for n>1.
Consider S(1): n=1, wp>u, sincew =1, u, =+/3. Hence S(1) is true. Let k be a
positive integer. If S(k) is true for all integer k, then u, >y, for k>1. Consider.

S(k+1).If S(k) is true , we get

Mert = N2+ <24y =thin,s
because of 2+u,; >2+u,, and we get u,,, <u,,,. Hence for all positive integers k,
S(k) true implies S(k+1) is true. But S(1) is true. Hence by induction, S(n) is true for

all positive integers n: u, <u,,, for n>1.
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9 Solution
(a) In figure 8.11, ABC is an acute-angled triangle. The altitudes BE and CF intersect at G.
AG produced cuts BC at D. Let it be ZEAG = o, ZFAG = f. It is a well known fact that a
quadrilateral is cyclic if the sum of its opposite angles is equal to 180°. Furthermore, the
sum of the internal angles of a quadrilateral are equal to 360°. As ZAEG = ZAFG = 90°,
ZAEG + ZAFG = 180°, and o +  + ZEGF = 180°.

Hence AFGE is a cyclic quadrilateral. One can prove

(see solution 9 in the exercise 8.3) that ZEFG = o and

ZFEG = B. Let us use the theorem that states: three E
altitudes of a triangle intersect at a single point. Hence

AD is the third altitude, and ZADB = ZADC = 90°.

This enables us to arrive at ZGBD = o and ZGCD =

B. Then we get A F

ZEFB + ZECD =0 +90° + p + LZECG = 180°, Figure 8.11

since ZECG = 900 -o.-p.

In an analogous way we obtain ZFEC + ZFBD = 180°. Hence CEFB is a cyclic
quadrilateral.

(b) It is clear that ZFGA =90°-band ZFBD=a+ ZFBG = + 90° - o - B = 90° - .
Hence ZFGA = ZFBD. Furthermore, AD is perpendicular to BC as AD is the altitude.

10 Solution

In figure 8.12, ABC is an acute-angled triangle. The B
altitudes AD and BE intersect at G. AD produced cuts the
circle through A, B and C at H. The inscribed angles ZBHA
and ZBCA are based on the arch AB. According to the G
theorem of the inscribed angle Z/BHA = ZBCA. The sum
of the internal angles of the quadrilateral CDGE is equal to A E C
360°. Since ZGEC = /GDC = 90°, we get ZECD + U

ZDGE = 180°. Furthermore, ZBGH = 180° - ZAGB = 180° Figure 8.12
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- ZDGE = ZECD. Hence ZBGH = ZBHA, as ZECD = £ZBCA, and ABHG is the

isosceles triangle with the altitude BD. As a result we get GD =DH.
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Further questions 8

1 Solution

Let a=(l,m,n) and b=(x,y,z) be vectors in a three dimension coordinate space with
scalar product (a,b) =1 x+m y + n z. Furthermore, we have

(a,a)= 12 +m?+n?20,

(b,b)=x?+ y? + 2% 20.
It is clear that for real A we get ;

0<(ha-bra-b)=(Al-x)?+(Am=y)*+(An—z)? =2%(a,a)-2Ma,b)+(b,b).
In the right-hand side the polynomial of second order with respect to A is not negative.
Hence, (a,b)2 —(a,a)(b,b) must be negative or equal to zero, and, we come to
(a,b)* <(a,a)-(b,b),

that is,
2

(x+my +nz)? (12 +m? +n®)(x2 + y* + 7).

The equality takes place, if for any real ¢ the following relations hold:
l=tx, m=ty, n=tz.
(a) Consider

3(a2 +b? +c2)—(a+b+c)2 = 2(a2 +b% +c? —ab-bc-ac)

=(a-by? +(a-c) +(b-c)* 20.
Hence 3(a® +b*+c?)2(a+b+c)? (equality iff a=b=c).
(b) Let us consider an expression

(a? +b2+c? Ya* +b* +c)— (@@ + B+ 3)? = a® + aPb* + aPct + bPat + b0 +
+b2c* +c2at + bt + 8 — a8 — b8 - ¢ —24%p° - 24°3 - 2b°C7
= a2b2(b2 + a2) + a2c2(c2 + a2)+ bzcz(c2 + bz) -2a°h° =24 - 2b°C7.
By using 2ab< a?+b?, 2ac<a*+c¢? and 2bc<b?+c?, we get
2a°p +2a°c +2b°c* < a2b2(a2 + b2)+ c12c2(a2 + c2)+ b2c2(b2 + c2) .

In view of this inequality we come to the final result

(@ +b*+cH)(a +b* +c*) 2 (P + b +¢3)? (equality iff a=b=c ).
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2 Solution

Let a>0,b>0,c>0 and d> 0. First consider the inequality
I 1 1
(A+B+0O)|—+—=+—= 129
A B C
with positive A, B,C (see example 4 in the Exercise 8.1).

It is clear that

9

S._l_.}.l.}._l_, ___9—S.l_+_l.+l,

a+b+c a b c . at+tc+d a c¢ d
_9__S_l_+l+l, __¢9_._S_I_+l+l

a+b+d a b d b+c+d b c¢ d

By addition

3 33 3 1 1 1 1

+ + + Sl—+—+—+—

b+c+d a+b+c a+b+d a+c+d a b ¢ d

(equality iff a=b=c=d ).
Furthermore, if we employ the inequality a + L 22, a>0 (see example 4 in the Exercise
a

8.1), w‘e have

(a+b+c+d)(—1—+l+l+l)=1+1+1+1+(%+£)+(£+£)+(§+£)+
a

a c a b

2+£ + £+i1- + £+£)24+2+2+2+2+2+2=16.
c b d c a d

Hence (a+'b+c+d)(-l—+%+l+%)216 (equalityiff a=b=c=d ).
a c

The substitution a > a+b+c, bo>b+c+d, c—>c+d+a, d—>d+a+b in this

1 1 1
+ + +—
b+c+d a+b+c a+b+d a+c+d

inequality permits to obtain the desired factor

and we get

3a+b+c+d) ! + ! + ! + ! 216,
a+b+c a+b+d b+tc+td a+c+d

(equality iff a=b=c=d ).
Then
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16 3 3 3 3
< + + + ;
a+b+c+d b+c+d a+b+c at+tb+d a+c+d

Finally, using the inequalities given above
3 1,11y 3 1 1+1+1),
b+c+d 3\b ¢ d atb+c 3\a b c

3 1Ifi 1 1 3 1f1 1 1
— <= —+—+—], —_— s —t—+—,
a+b+d 3\a b d at+c+d 3\a ¢ d
we come to the desired result
16 3 3 3 3 1 1 1 1
< + +

< + St —t—t+—
a+b+c+d b+c+d a+b+c a+b+d atc+d a b ¢ d

(equality iff a=b=c=d ).

3 Solution

Show by differentiation that xy < ¢ '+ yln y for all real x and all positive y . When does

equality hold?

Let f(x)= &+ yln y — xy be the function with parameter y > 0. It is easily to get
==y, ff(x)=0 e =y orx=1+Iny.

Furthermore, f’(x)>0 for x>1+Iny and f’(x)<0 for x <1+1n y, as we can see that,

if

x=Ax+1+Iny,then f'(x)= y(eA" -1), and
fi(x)>0 ifAx>0,and f'(x)<0 if Ax<O.
Hence f(x) has an absolute minimum of 0 when x =1+1Iny. As aresult, we get for all

|

f(x)20,and e + yln y > xy with equality iff x=1+Iny.

4 Solution

(a) Let us evaluate the following integrals:

1 1 1 1 1 3 I a1 757
r Ixz(l—x)zdx=Ix2(1—2x+x2)dx=szdx—21x3dx+jx4dx=[—:| —2{1—} +|:§—}
0 0 0 0 0 3
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1 2 1 1
=———+t—-—=—.
3 4 5 30
Ix(l—x) '1[ -2+ x4

x+2 0 x+2

dx .
0

By using =23+ X2 = (x+2)(x3 —4x? +9x-18)+36, we get

b ax

1 2.4 32 1
J'——x (1-x) dx=J(x3—4x2+9x
0 x+2 0

ral 37 2 7
X X X 4 9 3
=[ 2| 4| 2| 9| 2| —18[xT +36[In(x+2 ————+——18+36ln—
[4}0 |:3]0 [Zjlo [xf) [n(x )I) > 2

=175 3612
12 2’

(b) It is easily seen that for O0< x <1

because .

2 x+2 x+2

X (1 x)
+2

inequality with respect to x between 0 and 1, we deduce that

Since x2(1—x)2 >0, we get -:li—xz(l—x)2 < 2x (1 x) By integrating this

1 l
%sz(l—x)zdx < j—dxx "= —sz(l—x)zdx-
0 0

bx2(1-x)? 3 175

In view of jx (1-x)%dx = 30 j 7 dx=361n5-—1-2— (see Solution 4(a)), we

obtain

1 3
<3m3-175 1 2630 .o 3 876 2627 3 2628

90 2 12 60 180 2 60 6480 2 6480
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(a)

57 67 77 g
jx (1-x)'dx = f(x“ 4x° +6x% —4x" + x)dx = ,:5:' —4[%:, +([%J ._4[%:,

0
126111
=S —— =
53729630
8
dx

jx (1—;) di = Ix 4 +6x%—4x" + x
o 1+x 1+ x?

By using the representation
P —4x” +6x° —4x + x4 = ¢! +x2)(x6 —4ch5 +5x% =452 +4)-4,

we get

IM¢ j(x 455452~ ax? 4 s — 4 -
0 1+x 01+x

0 0 0 0

(b) It is easily seen that for 0 < x <1

1 1
—-< 2<1,
2 1+x
.2 2
because of 2__1_=__1__x_2_ , 11— 12= X 2>O.
I+x* 2 2(1+x%) 1+x° 1+x
4 4
Since x*(1-x)* >0, we get -;—x4(l—x)4<x1( f) <x}(1-x)
+x

By integrating this inequality with respect to x between 0 and 1 , we de

1
—jx a- x)dx<j-x(l—x)-dx<fx4(l—x)4dx.
0

In view of

1- 4dx-—
Ix( WA=
Ix (1--Jc)4 [ _2_1‘_’
0 14 x? 7

(see Solution 5(a)), we obtain
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7 T [ 37 1 2 14 22

X X X X -1
=l—| 44— +5|—| -4 =—| +4 —4{tan I)=___+1__+4_ =—-1.
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1 22 1 1 22 1 22 1 22 1

—__.._—< — e —

—< T < <7 <—— < .
1260 7 630 630 7 1260 7 630 7 1260

6 Solution

Let us show that sinx<x for 0<x < % . It is easily to deduce that for f(x)=x-sinx,
we get f'(x)=1-cosx20.

Hence for x 20 f(x) is a non-decreasing function with absolute minimum 0 when
x=0.

Thus f(x)>0 for x>0, and sinx<x for0<x<§.

Let us show that sin x > 3x forO<x< —125 It is not difficult to establish for
T

g(x) =sinx——2-x
/4

that g’(x)=cosx —;52— and g’(x)=0 when x = arccosz. Furthermore, for 0 < x < g

function g(x) has the only absolute maximum of sin(arccos2/m)—2/marccos2/nt>0

when x = arccos2/ 7, since

g'(x)=cosx _2 >0 for x< arccosz,
T T

g'(x)=cosx _2 <0 for x> arccosz.
T T

" Function g(x) reaches absolute minimum of 0 when x = O,g-.

Thus g(x)20 forO<x< g , that is, 2x <sinx, and, finally,
: 19

2 .
—x<sinx<zx,
19

2 .
——x>-sinx > —x,
T

e—x-2/1t > g Sinx e—x.

. . . o T
By integrating the last inequality with respect to x between 0 and > we come to
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je—xdx< je—smxdx< je—x-ﬂudx, _ [e—xr < je—smxdx<_5[e x uE ,
0 0 0 | 0

w2
1-e ™2 < [ dx < o (e-1).
0 2e

7 Solution

1 n
Define the statement S(n): 1-ln%+2-ln%+K +n-ln(fj—1)=ln£(n+') ] for n>1.
n n!

Consider S(1): n=1, l-ln%=ln(%)=ln2. Hence S(1) is true.

Let k be a positive integer. If S(k) is true, then

k
1242103 4K +k-Inf EFL) o | EFD_ |
] 2 "k Kl

Consider S(k+1).If S(k) is true, we get

Ln2+2- 24K +k- 1;1("+ )+(k 1)-In (k+2) ln((k+1) ]+(k +1)-1In (" 2)
1 2 k k+1 k! k+1

—In (k+l)l‘.(k+2)k+l 1 (k+2)*
k! k+1 (k+1)! |

Hence for all positive integers k, S(k) true implies S(k +1) true. But S(1) is true,

therefore by induction, S(n) is true for all positive integers n:

n
1102 +2 124K +n-ln(n+l)=ln (ntD) |
1 2 n n!

8 Solution

Define the statement S(n):

_JE_'_x(x+1)_'_L +x(x+l)L (x+n—l)=(x+l)(x+2)L (x+n)

1+

for n>1.

Consider S(1): n=1, 1+%=1+x=5—:—1. Hence S(1) is true.

Let k be a positive integer. If S(k) is true, then
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zc_+x(x+1)+L +x(x+1)L (x+k—1)=(x+1)(x+2)L (x+k).
2 k! k!

Consider S(k+1).If S(k) is true, we get

1+

1+£+x(X+1)+L +x(x+l)L (x+k-1)+x(x+1)L (x+k)
1! 2! k! (k+ 1!
_(x+D(x+2)L (x+k)+x(x+1)L (x+k)=('x+1)(x+2)L (x+k)k+1+x)

k! (k+D)! (k+1)!

Hence for all positive integers k, S(k) true implies S(k +1) true. But S(1) is true,
therefore by induction, S(n) is true for all positive integers n:

_'_x(x+1)_'_L +x(x+1)L (x+n-1)=(x'+1)(x+2)L (x+n)'
2! i n! n!

1+
1!

9 Solution
Let u, be given by u, =35" +3-7" +2-5" +6.
It is easily seen that
Uy =35"1 +3.7" 125" 16
=35(35"+3-7"+2-5" +6)—-105-7" - 70-5" =210+ 21-7" +10-5" + 6
=35-u,—84-7" —60-5" —204.
For n2>1 let the statement S(n) be defined by:  u, isdivisible by 12.
Consider S(1): n=1, u=35+21+10+6=12-6= S(1) is true, since y is divisible by
12.
Let k be a pos_itive integer. If S(k) is true for all integer k, then w;, =12- M for some
integer M. Consider S(k+1).If S(k) is true, we get
Upy =35-u, —84-7% —60-5% —204=35-12M -12-7-7% -12.5.5k -17-12
=12-(35M -7+ -5+ _17),
Since 35M —~7¥*1 —5¥*1 _17 is integer, we see that u,,, is divisible by 12. Hence for all

positive integers k, S(k) true implies S(k+1) is true. But S(1) is true. Therefore by

induction, S(n) is true for all positive integers n: u, is divisible by 12 for n>1.
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10 Solution
(a) Let P,(x) be a polynomial of degree n and given by F,(x)=(1+x)" —1.Itis clear
that

Po(x)=(1+x)"™ —1=(1+x)-(1+x)" -1=(1+x)((1+x)" —1)+1+x—1

=P (x)-(I+x)+x.
Define the statement S(n): P,(x) is divisible by x for n>1.
Consider S(1): B(x)=1+x—1=x isdivisible by x = S(1) is true.
Let k be a positive integer. If S(k) is true, then F;(x)=x-R,_;(x) for a polynomial
Ry _1(x)
of degree k—1,k 21. Consider S(k+1):

PBy(x)=F(x)-Q+x)+x=x-R_;(x)A+x)+x=x-(R_j(x)(1+x)+1).
Since R;_;(x)-(1+x)+1 is a polynomial of degree k (k 21), B ,;(x) is divisible by x.
Hence for all positive integers k, S(k) true implies S(k +1) true. But S(1) is true.
Hence by induction, S(n) is true for all positive integers n>1: B,(x)=(1+x)" -1 is
divisible by x for n>1.
(b) Let Q,(x) be a polynomial of degree n and given by
0,(x)=(1+x)"=1-nx; n22.1tisclear that
O () =(1+x)™ —(n+Dx —1=1+x)(1+x0)" ~nx =)+ (1 +x)nx +1+x—(n+1x -1
=(1+x)- 0, (x)+x°n.
Define the statement S(n): Q,(x) is divisible by x? for n>2.
Consider §(2): Q,(x)=(1+x)*-1-2x=x? is divisible by x> = S(2) is true.
Let k be a positive integer and k 22. If S(k) is true, then Oy (x)= x2- Ry _»(x) fora
polynomial R,_,(x) of degree k—2, k>2. Consider S(k+1):

Qa1 (x) = 1+ )@ (x)+ x%k = (1+ X)X Ry (x) + x%k = x> - (1+x)- Ry o (x) + k).

Since Ry_5(x)-(1+x)+k is a polynomial of degree k ~1 (k 22), Q,,,(x) is divisible

by x% . Hence for all positive integers k, S(k) true implies S(k+1) true. But S(2) is true.
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Hence by induction, S(n) is true for all positive integers n>1: Q,(x)=(1+x)" —1-nx is

divisible by x? for n>2.

11 Solution

(a) Define the statement S(n): %x" =n-x""1, n21.

Consider S(1): f—x—x =1.x2=1= S(1) is true.

‘ ' d -
Let k be a positive integer. If S(k) is true then Exk =k-x¥1, k21,

*

Consider S(k+1).If S(k) is true, we get by using the product rule for differentiation

S L Y S A e R =x*.(k+1), k=21.
dx dx dx dx

Hen'ce for all positive integers k, S(k) true implies S(k +1) true. But S(1) is true,

therefore by induction, S(n) is true for all positive integers n2l %x" =n-x"1

xn+]

(b) Define the statement § (n): Ix"dx = +c for n>1.

n+l1

2
Consider S(1): jxdx=i2-+c = S(1) is true.

k+1

Let k be a positive integer. If S(k) is true then S(k):Jxkdx = i+1 +cfor k2>1.

Consider S(k+1). If S(k) is true, we get x*dx = T
' . +

. Using integration by parts leads

to

dxk+1 xk+2 k+2 I

1 ka+1dx X

k+1 k+1 k41 k+1

k+2 k+2
If1e—]=Z = I=X_.
k+1 k+1 k+2

k+2

Finally, we get jxk“dx = I):+ 5 +c¢ . Hence for all positive integers k, S(k) true implies

S(k+1) true. But S(1) is true, therefore by induction, S(n) is true for all positive integers -
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_[x"dx= +c for n21.
n+l1
12 Solution
n - n—] - 1
(a) Define the statement S(n): d In(l1+x)= M, n21.
dx" 1+x)"
o d 0! 1 .
Consider S(1): —In(1+x)= T = = S(1) is true.
dx (1+x) 1+x

d* (D (k=1

Let k be a positive integer. If S(k) is true then —-In(1+ x) = k2>1.
P 8 dx* (1+x)k

Consider S(k+1). If S(k) is true, we get by using the product rule for differentiation

k+1 k k-1
d——ln(1+x)=i -d—ln(1+x) _4.D '("'1)!=(-1)"°‘(k-1)!-i L
dxk+] dx dxk

d  (+x) dx (1+ x)*

_ DR e=DrE _ (=D k!

= , k21

Hence for all positive integers k, S(k) true implies S(k +1) true. But S(1) is true,

therefore by induction, S(n) is true for all positive integers

n Nyl '
n2t e n=CD @D
dx" 1+x)"
n -1
(b) Define the statement S(n): d Inl-x)=- (n=D! , n21
dx" (1-x)"
. d 1 .
Consider S(1): —In(l1-x)=-——= S(1) is true.
dx 1-x
o . d* (k=1)!
Let k be a positive integer. If S(k) is true then —In(1-x)=— , k21,
dx* (1-x)*

Consider S(k+1).If S(k) is true, we get by using the product rule for differentiation

dk+ d| d* d{ (k- d 1
(k+1) —In(1-x) [ = In(1 x)] ( ) (k=1)! "

1 k!

=—(k-1)tk =- .
(k-1) -0 (1=
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Hence for all positive integers k, S(k) true implies S(k +1) true. But S(1) is true,

therefore by induction, S(n) is true for all positive integers

d” ln(l—x)=—(n_1)!.
dx" (1-x)"

n21

13 Solution

Let the function f(n) define the quantity of diagonals for a convex polygon with n >4
sides. It is easily seen that f(n+1)= f(n)+n—1 (see figure 15), since including an
additional point A, for a polygon with 7 sides leads to new n—2 diagonals with respect

to the points

A, A K | Ay, besides the side AjA, becomes a new diagonal.

Define the statement

M for n>4.

S(n): f(n)=

Consider S(4): f(4)= 4—21 =2= S(1) true.

Let k be a positive integer, k >4 . If S(k) is true for

all integers k >4, then f(k)= k(k2— 3) . Figure 15

Consider S(k+1).If S(k) is true, we get

k2—k—2=(k+1)(k—2)
2 2 '

We see that S(k) true implies S(k +1) true for k 24 . But S(4)is true. Hence by

flk+D)=f(k)+k~1= tk=1=

k(k-3)
2

induction, S(n) is true for all positive integers n=>4.

14 Solution

Let u, be the number of intersection points formed by n=2 lines. We are seeking a
recurrence relation between u,,; and u,. The (n+1)th line intersects each of the other

lines (see figure 16).

o )< Set of 3 lines
Hence we have n distinct intersection points along the B E—

additional line, and / "\~ 4th line
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Uy =U,+n, n22.

Define the statement S(n): u, = ﬂ%——l—z n22.

Clearly S(2) is true, since two different lines give one intersection point. Let k be a

k(k-1)

positive integer, k 2 2. If S(k) is true, then 1 = . Consider S(k+1)

k(k—1) k2 —k+2k _ k(k+1)

2 2

+k=

Upyy = U+ =

k(k+1)

Hence u;,; = , if S(k) is true.

Thus for all positive integers k, S(k) true implies S(k +1) true. But S(1) is true, hence

n(n-1)
2

S(n) is true for all positive integers n: n such lines have points of intersection.

15 Solution

3
Let 14 =1 and u,,=2-’ﬁ2+—21 forn22.

3uy_y

(a) Define the statement S(n): 4, >3, n=22.

u, = 2;f7=332>3 = §(2) is true.

Let k be a positive integer. If S(k) is true then 4, >3, k2>2.

Consider S(2):

Consider S(k +1). Show that &, > 3. To this end, let us consider a function f(x) given

by
2 9
f(x)=§x+-x—2,x23.

It is easily seen that

, 2 18
f (x)=§—'x—3-

We obtain that f'(x)=0 when x=3, f”(3)>0. Thus the function f(x) has an absolute

minimum of f(3)=3. Hence

f(x)=3x+-9—2>3 for x=3.
3 x
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Thus, if S(k) istrue (4, >3, k22), using this inequality, we get

a2 +27 2 9
S(+1): gy = —_—"m =y +— >3,
. 3uk uk

Hence for all positive integers k, S(k) true implies S(k +1) true. But S$(2) is true,
therefore by induction, S(n) is true for all positive integersn22: u, >3.

(b) Show that u,,  <u, for n22.

; 1 9 . _2 9
One can deduce that u, —u,,_ =-3—u,, ——>» SINCE Uy, -Eun +u—2,
. u 2

n

Let the function g(x) be given by g(x)= —;—x - —93, x23.
x

It is easy to see that g’(x) = —;— +% >0 for x 23. Hence g(x) is a monotonously

increasing function for x 23 and g(3)=0. Thus g(x)>0 for x>3, and

-l—x—-%>0, x>3.
x°.

By using this inequality and the fact proved in (a) that u, >3,n>2, we get %“n ——9—2 >0.

n

Hence u,, <u,,n22.

16 Solution

1 3
Let =1 and u,,=5(un_l+ )forn22.

n—1

(a) Define the statement S(n): u2 = %(u,z,_l +6+

29 )>3 for n>22.
Uy

Consider S(2): u3 =%(1+6+9)=4>3 = S(2) is true.

Let k be a positive integer. If S(k) is true then ukz >3, k=2 or

2

S(k): u,3=-1-(u,%_1+6+—9—J>3 for k>2.
4 Uj—1

Consider S(k +1). Show that u,,% >3, that i,
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S(k+1): ey =—| up +6+=|>3.

Show that S(k +1) is true. Let the function f(x) be given by

f(x)=—1-(x+6+2), x23.
4 X

%),and f’(x)=0 when x=3, f”(3)>0.

. 1
It is easy to see that f'(x)= —(1 -
4 x

We obtain that the function f(x) has an absolute minimum of 3 when x =3. Hence

l(x+6+2)>3 for x>3.
4 x

. o 1
By using this inequality, in view of u,% >3, we get u,%+1 = Z(u,% + 6+—92-) >3.
Uy,

Hence for all positive integers k, S(k) true implies S(k+1) true. But S(2) is true,

therefore by induction, S(n) is true for all positive integersn = 2: u,,2 >3.

(b) Show that u,,, <u, for n=22.

One can deduce that u, —u, ;= lu,, _3 and u, >0 for n2>2.
2 2u,
. . 1 3
Let the function g(x) be given by g(x) = Ex —a—, x>0.
x

It is easy to see that g’(x) =-;—+2i2> 0 forall x.
x

Hence g(x) is a monotonously increasing function and g(x)=0 when x = V3. Thus

g(x)>0 for x>\/§,and %x—21>0 for x>+/3.
X

By using this inequality and the fact u,% >3oru, > V3, proved in (a), we get

—u, - >0 for n>2. Hence u,,; <u, for n>2.

2 2u

n

17 Solution

Show that for n2>1, n!>2""1,

Define the statement S(n): n!>2""! n>1.
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Consider S(1): n=1, 112 29 =1. Hence S(1) is true. Let k be a positive integer. If
S(k)is true, then k!>2%71 k>1. Consider S(k+1).If S(k) is true, we get

+1 ) k+1
(k+1)!=k!(k+l)22k‘l(k+1)=2k-%—ZZk,smce( ; )

21, k=>1.Hence

(k+1!2 2,k >1. Hence for all positive integers k, S(k) true implies S(k+1) true.

But S(1) is true. Hence by induction, S(n) is true for all positive integers

n o n!'22"1 n>1.

: 1 4 1
Deduce that the statement I 5+ I 3 +, + 3 S—(l ——), nxl.
ans @2Hny (nhH 3 ) 4"

Consider S(1): n=1, _1_53:4_(1__1_)=1.
’ ) 3 4

Hence S(1) istrue. Let k be a positive integer. If S(k)is true, then

1 1 1 4 1
an? 22 H ey 55(1_4_")'

Consider S(k+1). If S(k) is true, we get

' 1 1 1 1 4 1 1
Stk+1); —+——=+, <—|l-=|+—.
(k+1) (112 +,(2!)2+ +(k!)2+((k+1)!)2 3( 4")+((k+1)!)2

) - 1 . .
Since k!22¥7, k>1 we get W < Zlk— . By using this inequality, we come to

-1—2+—1—2+L+ 12+ 1 2Si(l——1,c—)+—lr=i(l- L.
ans @n (kY* ((k+DH* 3 4 4% 3 gk+!
Hence for all positive integers k, S(k) true implies S(k +1) true. But S(1) is true. Hence

by induction, S(n) is true for all positive n:

1 1 1 4 1
an? @y + T S5(l—47)'

18 Solution

Let =1, uy=landu, =u, +u, , forn>3.

Define the statement S(n): u, -1 1+ - 1-+5 for n2>1.
V5|2 2
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Consider S(1): u = —j? {1 +2‘/§ - 1—2‘/5} =1= S(1) is true.
2 2
Consider S(2): u, = % (1 +2‘/§J —(1 "2‘5) = %{i;/_g} =1=55(2) is true.

Let k be a positive intcger, k>2.1If S(n) is true for all integers n <k , then

1 (1+«/§]"_‘1—J§

n
] for n=1,2,K ,k. Consider S(k +1):

“TH5N T2 ) T2
( k k k-1 k-1
1445 ) 1-+5 1 |{1++/5 1-+/5
“k+1=“k+“k-1=f< 2 | T2 +_\/_§ 2 | T2
L
\k-1 \ k~1
__1_ 1+J§ . 1+J§+1 — l:ﬁ . l_—£+1
N S R 2 2

NG

if S(n) istruefor n=1,2,K k. For k=2,3,K , S(n) is true for all positive integers n <k

1 1+‘/§\k—l (1+‘/§]2_(1_‘/§)k—1.(1;‘/§)2 _ 1 [ln/i}kﬂ_(_l_—ﬁ)kﬂ

S22 ) L2 2 2 B2 2

implies S(k+1) is true. But S(1), S(2) are true. Hence by induction, S(n) is true for all

_ 1 (1445 (1-45Y
un—Jg 2 2 .

positive integers n:

19 Solution
ABCD is a quadrilateral such that ZABD = ZDBC = ZCDA = 45°. Q is the point on BD
such that CQ bisects ZBCA. It is easily seen that C

AQ is the bisector of ZBAC as we know that the

bisectors of A ABC intersect at the common point N
Q. A

Figure 8.13
Since ZABC = 90°, we get

2ZQAC +2.£QCA +90° = 180° thus ZQAC + LQCA =45°.
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_ 20 Solution

48

It is clear that ZQAC + ZQCA + ZAQC = 180° thus ZAQC = 135°.
Hence ZAQC + ZADC = 135° + 45° = 180. A quadrilateral is cyclic if the sums of its
opposite angles are equal to 180°. Thus this is true for the angles ZAQC and ZADC. But

we know that the sum of the internal angles of a convex quadrilateral is equal to 360°.
Therefore we obtain ZQAD + ZQCD = 360°-(LAQC+ ZADC) = 360°-180° = 180°.

Hence the quadrilateral AQCD is a cyclic one.

ABC is a triangle. The bisector of ZCAB cuts BC at D. K is the point on CB produced

such that BK = AC. AB produced cuts the circle through C
A, K and D at P. One can prove using the theorem of sines K
that the bisector AD produced cuts BC at D in such a way D

that the following relation holds: BD = e . Hence
AB AC

DC = AC-BD/ AB. A P
Then consider the triangles ABD and PBK with the Figure 8.14
common angle ZABC. Moreover, we see that ZPAD =
ZPKD as these inscribed angles are based on the common arch DP (theorem of inscribed

angle). The triangles ABD and PBK are similar ( their two angles coincide). Hence their

sides are proportional to each other: ]I;_B]; = % Using AC=BK, we get

PB=BD-BK/AB=BD-AC/AB.
If one compares the results derived for DC and PB, then it is clear that BP = DC.
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