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Specimen Paper 1.

1 Solution
1 (a)

(ii)
Y4
(0,1}
(EX))
dy
dx
(b)

_ Inx+1  dy

Let us sketch the graph y = f(x)=xInx
Features of y = f(x)

e y=0 at x=0, y=0 at x=1

¢ y-—>+4oo as x—> oo

. Q:lnx+1, —d—y—:O if Inx=1=x=¢"
dx dx

(stationary point - minimum), f(e')=—¢"'

e Domain {x: x> 0},Range {y: —e™ <y <+o}

Let us sketch the graph y = h(x) =

xlnx
Features of y = h(x)
¢ y——oo as x>0, y>-—o as xo1
y—+eo as x—1", y—> 0" as x — +oo
.

=0 if Inx=-1=x=¢"

N Inx’
(stationary point - maximum), A(e™) = —e
e Domain {x: 0<x<1 or 1< x < +oo}

Range {y: —eo<y<—eor y>0}

) y=gx)=xInx for le

Features of y = g(x)

-1

e end point: g=—¢  at

e

1
x=-
e

e point of intersection with the x-axis: g(x)=0= x=1

¢ point of intersection withtheline y=x: xInx=x = x=¢, g(e)=¢
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@ y=g'(x) for x >1
e
Features of y = g™'(x)
. 1 1
e endpoint: x=——, y=—
e e

¢ point of intersection with the x-axis: x =0, y=1

e point of intersection with the line y=x: x=e, y=e

(iiiy We note thét %ln x= 1 . Hence, integration by parts with In x as the second
x
function yields
e 2 e e - 2 e 2
- 1 1 e
_[xlnxdx =2 Inx —1Jx2idx =f——0——dex = e———[xZ] = l(e2 +1).
] . 2 L 27 X 2 29 2 4L 0 4

The desired area S is equal to

o f I R PN R P
Sf2(J‘xdx—_J‘xlnxdx)—2(2 4(e +1))—2(e .1).

0 1

2Solution
(a)

e** _re'de’  tudu B 1 _ B du _ e .
J1+e‘dx_Jl+e‘—Jl+u—J(l 1+u)du—Jdu Jl+u_u 1n|1+u|—e 1n(1+e)
(b)

IEJSinsxdx:JSinzx(—cosx),dxz—decosx
' cos* x cos* x cos* x )

Using the substitution cosx =u,

I=—Jl—u2du=— -d—u-}-jﬂ:L 1 1 1

ut ut w38 u:3c053x cosx
(c)

2tani X
sinx=———27.Use the substitution u=tan—;

1+ tan®=

2
du:l dx :>'du=—1- 1+ tan? 2 |dx =
22X 2 2

cos
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3
_ 2du
1+u*
©2 1 1 1
1 2du 1 du
Now I4+5$1nx =] 1+ J4u +10u+4=5I i T g "
04+5. —— — 0 0 2
1+u 4 16
1 1 1
o e e Lo ] -
23 O A G 6 3y ut— u+2 3 u+2 |
4 4 4 4 2
Hptt/2 V2t 1l nd)- i,
3 1+2 2 30 2 4) 3
(d) We use integration by parts.
1 ’ 1 1 ’
js"‘ S x j sin x(2vT+x) dx = [sin-‘x(241+x)]o—j(sin—‘ x) 2T+ x dx =
J1+x Ll
2«/1+x L dx 1 '
kit 2J’ =2n-2 =2n+[41-x| =2n-4.
I e !
3 Solution
X2 y2
(a) The tangent to the hyperbola —2——-b—,-=1 at the point P(asec0,btanf) has
a 2

. bsec
gradient

e If P is an extremity in the first quadrant of a latus rectum, then
atan

asecO=ae. Thus sec® = e => tanB = v'sec?0—1 = /e — 1. Since for the hyperbola

b* =a®(e* -1),then ve* -1= 2 Hence the gradient of the tangent is -—92— =e.
“ (2]
a

(b) The tangent to the ellipse
x2 2

a2

+—=1 at the point

%[

P(acos0,bsinB) has equation
~a| §'(-ae0)

xcosf + ysin@ _ 1. Therefore the

a b
point A has coordinates
(0,bcosec®). The normal to the -b
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2 2
ellipse £—+%— =1 at the point P(acos0,bsin0) has  equation
a
2 2
= _.b_y ='a’ —b?. Hence the point B has coordinates O,b 2 sing |,
cos® sin® : b
. el 22y 2 2 .
(i) Gradient AS x gradient B§ = 2°95%¢9. (0" =a7)sin® _ (67 =a7) i1 e for the

—ae b(~-ae) a’e’
ellipse b> =a’(1-e”), then gradient AS X gradient‘BS =-1. Hence AB subtends a

right angle at S .
(ii) Since AB subtends aright angle at P, then A, P, §, B are concyclic with AB
the diameter of the circle through the points. The centre of the circle is the midpoint of

AB.

L

4 Solution
(a)
(i) Let (a+ib)? =-3+4i, a,b - real. Then (a®—b*)+(2ab)i=-3+4i. Equating

real and  imaginary  parts, a’-b>=-3 and ab=2. Hence

4
a’~-—=-3=a"+3a>-4=0, or (a’+4)a®-1)=0. Since a is real, then
a

a=1=2b=2o0ora=-1=2b=-2.
(i) In order to solve the equation 22 -3z+(3-i)=0 we need to calculate the

discriminant A =9-4(3—-i)=-3+4i. We know (see p.(i)) that A has square roots

3+ (1+2i)

+(1+2i). The quadratic formula: 72> —=3z+(3—1i) =0 has solutions z = 5

Hence z=1—ji or z=2+i1.
(b)
V3

(i) Let z=1+iv3. Then z= 2(%+7iJ = 2(cos§+isin§) = 2cis§. Similarly

1-if3=7= 2(% - %:J = 2(cos[— %) + isin(—g)] - 2cis(—§) .

(if) Using De Moivre’s theorem z'® = 2'°(cos% +isin L(;E) Therefore
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i e A s e e

10 10 1
(1+iJ§) +(1—iJ§) =z‘°+(2)‘°=2Re(z'°)=2”cos—(;£=2048-(—%)=—1024
(¢) (i) and (ii) Let y,=x’~x+2 and y,=mx. If y, is a tangent to y,, then

y, = y, and y/ =y, at the point of contact.

yl=y2=>x3—x+2=va (1)
Y=y, =3x*-1=m. (2)
, 3_
(1):2) =>£3——3£ilg=x=>x3——x+2=3x3—x=>x3:1=>x=1;
x —

x=l=y, =P-142=y =2;
x=1, y=2= from y, =mx wehave m=2.

So the equation of the tangent is y =2x, and the point of contact is (1,2).

5 Solution

(a) |z|=1 is the circle, centre (0,0) and radius 1, argz =0 is the positive x -axis,

argzzz% istheray y=x, x>0.

@ N S
0 Jc>
X +yt=1
(ii)
.

(b) (@)
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(b) @

)

Let us split'the volume V of the solid into volumes v® and v® as shown on the

figure. Now we shall find the volumes v® and v
' 1) Volume v,
The typical cylindrical shell has radii " (x)=x+a, )

height h(x)= f(x). The shell has volume

sy = n[(rz(‘))z - (ﬁ(‘))z}h(x) =2n(x+a)f(x)8x (ignoring (8,\7)2 ).

(x)=x+a+6x,and

- V9= lim i21t(x+a)f(x)6x=27t:].(x+a)f(x)dx.

X==a

Substitution x = —x gives

v = —211:} (—x + a)f(—x)dx .

a

| Then f(—x)zf(x) = V(')=2nj(—x+a)f(x)dx.
2) Volume V(z):

The typical cylindrical shell has radii r,(z).(x) =x+2a, 1‘2(2) (x) =x+2a+0dx,

and height A(x)= f(x). The shell has volume

sV = 1'{(1‘,(2))2 - (r,(z))z]h(x) =2n(x+a) f(x)8x (ignoring (&c)2 ).

o VO = tim S 2m(x ) £(x)8x = 20 (3 + @) £ (x) s

x=0

Thus

v=yWiy® - 21:} (~x+ a)f(x)dx+2nj (x+a)f(x)dx

0
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- 21tI[(—x+ o)+ (x +a)| £ (x)dx = 4mi £(x)dx

the volume of such a solid is 4naj fx)dx.
0

(i)

Yt We can apply the formula
derived above taking into
R account that the shape of

L2 > _ 2 _ the volume V to be found
(x +1)1 i 4 (x 1)1 Ty is symmetrical with
- respect to the plane Y =0.
Hence

14 =2-4naff(x)dx.

The equation of the left
circle is

(x+1)+y* =4,

Therefore f(x)=+/4—(x+1),and a=1.
v =8nf 4 (x+1) dx.
0

We make the substitution x =2sin@ -1, dx =2cos@d¢ . Obtain new lower and
upper limits of integration:

the lower limit: x,=0
0=2singp, -1
. -1 T
@, =smn (%)=‘g,
the upper limit: x, =1
1=2singp, -1

¢, =sin"'(1)= g :

7 L
\/;’ [(2sin e-1)+ 1]2 cosQdp = 327‘_[ cos? @ do = 327‘} 1+ c<2)s 2¢ do
s

_ sin2¢ %_ T sinm sm L _4m
_16n[¢+ 5 }E—l6n[2+ 2 ] ( J— 3 ( T 3J§)
6

the volume of the solid is ——( - ) cubic cm.

V=8n2

OA o | A
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6 Solution

Dimension diagram Forces on P

(i) The resultant force on P is mr ®” horizontally to the }eft. Its vertical component is
zero = T,cos®-T,sinb=mg. 4))

Its horizontal component is mr®* = 7T,sin6+ T,cos0=mrw’.

e
()xcosB+(2)xsin0= T, = mw’rsin®+mg cosH.
3
(2)xcosO—-(Dxsin®= T,=mw’rcos®—mgsind.
. C))
Further, AB=5/, AP=4/ = BP=+AB?- AP?> =3/. Hence sin9=%=§,
cosezﬁzi,and r=APsin9=4l-§=21.
v AB 5 5 5
As the string is taut, 7, > 0= from (4) m®°rcos8>mgsinbd = ® -—l-—>g--5—:>

16w >5g.
(ii) If the string is free to move, T, =7, . Hence from (3) and (4)

Q’rsin@+ gcos®=Q’rcos— gsind= Q’r(cos®-sinB)= g(cosO+sin) =

,12 (4 3 4 3 2
Q2 2-Z =gl 242 ] 1204 =355
5 (5 5) g(s 5):’ s
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7 Solution

(a) (i) Let R(x) be remainder, hence deg R <deg(x~a)’ =2= R(x)=cx+d with

constants ¢ and d.So P(x)=(x-a) Q(x)+ex+d,

P'(x)=(x-a){20(x)+(x - a) Q"(x)} +c.

From here P(a)=ca+d, (1
P(a)=c. 2)

()-(@2)xa=d = P(a)-aP’(a). Hence cx+d = P’(a)x+ P(a)—aP(a).

(ii) (x—1) isafactor of P(x)= P(1)=0=>1-3+k+1=0=>k=1;
P(x)=(x-1)Q(x) as (x—1) is a factor of P(x). Dividing Q(x) by (x-1),
Q(x)=(x-1)D(x)+c , where c is constant. Hence
P(x)=(x=1){(x-1)D(x)+c} ~ 3)
= P(x)={(x- l)zD(x)}, +c= P(1)=c.But P/(x)=11x"—18x* +4x* + 2x =

P'(1)=11-18+4+2=~1. Hence c=-1. So from (3) P(x)=(x—1) +1-x=> the

remainder is (1-x).

(b)
1,5mat 1,00am L High water « x=0,5; t =0 minutes
1,25m . Danger water «x=025
Im L Center of oscillations «x=0
0,5m at 7,30am J Low water « x =-0,5; t =390 minutes

Period Tis 2-390 = 780 minutes.
Amplitude is -;—(1,5 ~05)=05m.
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Amplitude is %(1,5 ~0,5)=05m.

Motion is simpie harmonic = ¥ = ~n’x, n= 2n =

T 390

This equation has solution x = 0,5cos(n + o), 0<a<2n.

Initial conditions: t=0, x=0,5= cosaa=1=a=0= x=0,5cosnt.

There is a danger of flooding if x >0,25. Find the first moment of time when
x=0,25; 0,25=0,5cosnt => cosnt = % =>nt= g = ¢t =130minutes =2,10.

Hence x =0,25 at 1,00+ 2,10=3,10am. So there is a danger of flooding from

midnight to 3,10am. ‘
. . T
The following danger will be from 7,30+ (5 - 2,10) =730+ (6,30 - 2,10) =11,50am

t0 11,50+2-2,10=4,10pm .

8 Solution

@If =5, wy=13and u, =5u,_,—6u,_, for n>3, show that u =2"+3" for
n21. 4
Define the statement S(n): u,=2"+3" for n21.
Consider S(1): n=1, u =2+3=5= S(1) is true.
Consider S(2): n=2, wu,=2"+3*=13= S(2) is true.
Let k be a positive integer, k >2.If S(n) is true for all integer n <k, then
u =2"+3", n=123,.. k.
. Consider S(k+1).If S(n) istrue forn=1,23,...,k, we get
U, =5u, —6u,_ =52 +3)-6(2"" +3"")=2.2 +3.3" =
. - 2I<+l + 3k+] .
Hence for k22, S(n) true for all positive integers n <k implies S(k+1) is true.
But §(1), S(2) are true. Therefore by induction, S(n) is true for all positive integers
n:
u =2"+3" for n21.

2
®) @ (Ya-vb) 20= a+b-2ab20= a+b22Vab (equality iff a=b),

(ii) multiplying these inequalities,
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a+b22vJab
b+c22be |= (a+b)b+c)c+a)28abe (equality iff a=b=c).

c+a22‘\/a

Furthermore, 3+222JE, £+£22\/E, \/g+\/—_€22.
b ¢ c d a a c a

Hence, using these inequalities, we get

3+2)+(£+£)22 \/E+\/E >4 (equality iff a=b=c=d).
b ¢ d a c a

7SD Solutions Series
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Specimen Paper 2.

1 Solution
1 (a)

y A (i) Letus sketch the graph,xV2+yV2=1.

1 x%+y%=1 It is clear that x 20, y=>0.Hence

AN p | Domain {x: x>0}, Range {y: y>0}.

i Features
0 ¢ | e y=0 at x=1, y=1 at x=0
sl 1l ed o Q__(zjm
2 dx dx x
As x>0, yo 17, EZZ—)—oo.

The curve has a vertical tangent line at the critical point (0,1).

As x—>17, y—= 0, Q—)O".

The curve has a horizontal tangent line at the critical point (1,0).
(ii) Letus show that OQ + OR is independent of the position P(x;,y;) (see Figure).

As 224y =1, we have y=(1-x) =1-2x+x, L=1-L.

dx J;
1
The tangent at P is y=(1—T)(x——x,)+l—2\/;cT+xl =x(l—%)—\/;7+1,
‘ X Xy

=1(0Q=x if

y=0,and OR=y if x=0), and it is independent of x,.
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(b)
(i) The tangent to the curve y = f(x) which passes through the VA
point (xg, yo = f(xp)) is givenby y=k(x—xy)+ y,, where
k= f’(x,) is the gradient of the tangent. ¢
If y=f(x)=e", y,=¢%, k=e", we get yoo& .
0 I

y=e(x—x)+e®.

As th;a tangent passes through the origin (x =0, y =0), we obtain
0=-xpe® +e? = xy=1= k=¢'=¢.

Hence the tangentis y =ex.
(ii) If we take into account the solution described above, it is easily seen that the set

of the values of the real number k for which the equation e* = kx has exactly two
solutions, which are

{k: k> e} (see Figure).

2 Solution
(@) 3+2x—x’=~(x~2x+1)+4=4—(x~1) =2~ (x~1) = b=2,a=1.

Furthermore,
I= JJ.,/(3+ 2x—x2)dx = j,/zz —(x—l)z- dx = 2'3[ l-—(x—;-l)z , by using the
1 1 !

- -1 s . - o
substitution u = 52— , wegetl= 4J 1- u’du . Using the substitution u=sint yields
]

2 n2 . n/2
I=4Jcosztdt=4jmdt:Z[t+5m2t} =7.
0 [} 0
(b) We integrate by parts,
¢ d
Ix 1., dx=Jx(tanx) dx=xtanx—Jtanxdx= xtanx+J (cosx) _
Cos™ x cOoSXx

x tan x + In|cos x.

I X
(¢) We use the substitution u = tan -5;

7SD Solutvions Series




14

2sin1‘f—cosi 2tani 2
sinx = x2 2x= 2 :l 5
sin? >+ cos?>  I+tan?E Y
2 2 2
2 "2
l+cosx=1+2cos?2 —1= — =1 -
l+tan"— tu
2
2 1 2 2d
u=tan® = du=t P _Liian S |ae s du= 2 (1402)dr = dx = 224
2 2 2 X 2 2 1+u
cos” —
Hence
1 1 1
I= dx = Inll+ui =In2.
-([1+cosx+smx -([ 2 2u e .([ [l ”

1+ u? 1+u

. I T
Furthermore, using the substitution u = 2 x,

5 5]
~ w2 ——Uu
2 du = 2 du =

2 x ] 0
/= j1 dr=- | 1+si
+cosx +Sinx T [T +smu+
Y2]l+cos| ——u {+sinf ——u 0 cosu
2
o/ /2

g1 1 u T

—J - du—j ——du=—1-J.So we have

2 o 1tcosu+sinu l+cosu+sinu 2

J=§I—J=>J=§I.Butfromthe above I=1In2, hence J=—§1n2.

-3 Solution

(a)

2
LY
29-k 4-k

with a=+29-k and b=+v4—k. Since b<a, then b>=a’(1-e?). Hence

(1) If k <4,then 29—k >0 and 4 -k > 0. Therefore

=1 is an ellipse

2 2
e= —a—é—— and the foci have coordinates (+ae,0) = (i a’-b? ,O) = (%5,0) . Thus
a

the foci of the ellipse are independent of the value of k.

' 2 2
(i) If 4<k <29, then 29~k >0 and 4—k < 0. Therefore ———+-—2 _—1 is a
29—k 4—k
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hyperbola with a=+29-k and b=+k—4. For the hyperbola b2 =a’(e*-1).

2 2
Ja“+b ) )
Hence e=——— and the foci have coordinates
a

(+ae0) = [+Va® +b* ,0)= (+5,0) . Thus the foci of the hyperbola are independent of
P

the value of k.

(b) The tangent to the hyperbola xy=c’ at the point P(ct,g) has equation
t

x+1>y =2ct . Hence the tangent meets the x-axis at Q(2ct,0) and the y-axis at

R(O,E). The normal to the hyperbola xy = ¢* at the point P(ct,gj has equation
t t

tx—lzc(t2 —i,) Thus the normal meets the line y=x at S(c(t+l),c(t+1))
t t° t t
. 1 1
and the line y=—-x at T| ¢| t —— |,—c| t —— { |. Therefore
t t
SUPT OO PR Y (U ) I PR
QS =c|t+-=2t| +c’|t+=—| =2c°[t"+— |,
t t t
Z(E—t—l) =2(:2(t2+—-12—),
t t t

SR

~

I

13}

~
/N

LS

+
- l'—'
|
~

+

(9]

RT

)
1l
©
~
/N
g
|
~ |
N—’
~
+
o
~
TN
L
+
~ | —
|
~ |
N————’
[
]
|\
(%)
/N
LY
~
+
|
N————

(%)

IQ

1) 1\ 1
=c2(2t—t+—) +c2(t——) =2c2(t2+—7).
t t t

So OS = SR = RT =TQ and, consequently, QSRT is a rhombus.
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4 Solution

(a) ‘
(i) The point P represents the number R(-12+3)\, ¥4

7, =2i=2 cosZ+isinZ |. So z, = 2cis=.
2 2 2

The point Q represents the number

A )
2, :-—l+i\/§='2 ——l-+z'i—2 =2 c052—1t+ism—1t
2 2 3 3

A P(0.2)

.2
So z, =2c1s?n.

0 x

R
(ii) The vector OR represents the number z, + z, .

-
The vector QP represents the number gz, —z,. Since |z1|:|z2|, then

OP = OQ = PR = QR . Therefore OPRQ is a thombus. Hence ZPOR = %LPOQ and

o . - . . o
vector QP is obtained from vector OR by a rotation clockwise about O through —2—

followed by an enlargement in O by a certain factor. Thus

arg(z, +zz)=§+LPOR=§+%~LPOQ.

T

Since ZPOQ = argz, —argz, =31—t-—£=%,then arg(z, +z2)=§+ %——

3 2

1
2 12°

gz~ ) =arg(y, +2,) = BT
b P 12 2 12

(b) Let A(2,0), B(-2,0) and P represent 2, —2 and z respectively. Then AP and

BP represents z—2 and z+2 respectively. arg(z—2)—arg(z+2) = % requires XP

to be parallel to the vector obtained by rotation of BP anticlockwise through an angle

ofE.
4
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If P lies below the x-axis, AP must be parallel v
to a clockwise rotation of BP. This diagram B(-2,0) 0 AQD) x

shows \ 7=2

| arg(z~2) ~arg(z+2) == 2+2
. : P
Hence P must lie above the x -axis.
Since alternate angles between paralle] lines are yA P
z+2

equal, LBPA=% as P traces its locus. Hence

P lies on the major arc AB of a circle. /

B(-2,0) o A(2,0) %

The centre C of this circle lies on the v

perpendicular bisector of AB, and

chord AB subtends an angle 2 % =_725

at C. Therefore (QOC=2 and
AC= 2\/5 . Hence the locus of P has

equation x* +(y~2)> =8, y>0.

| &l

B(-z,of‘\ M(z,m

(c) Let the roots of P(x)=x>+ax?~x—2 be a, 20, and B. The production of the

roots is
20 = 20.*B =2 and hence a’B=1. )
The sum of products of the roots taken two at a time is 20> + o + 208 = 20.” + 30,
hence 20° +30f = —1; (2)
(2)xo = 20’ +30’p = —at, and using (1), 20°+3 =~ => 20’ + o +3=0. It is easy

to see that o = —1 is a zero of the last equation. To find other zeros, use the

polynomial division
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20°+0a+3 by a+1:

20" -20+3
o+1)20° + o+3
200 +20°

—20°+0+3
-20’ - 20

300+3

300+ 3

0

Hence (20 + o +3)=(ot+1)(2a’ =2 +3) . But 20° —200+3=0= o=

1£J1-6
—

And so the equation 20.* + 0t +3 =0 has only one real zero o = —1. Hence the second

' . 1 .
zero is 20, = —2 and from (1) the third zero is § = — =1. Knowing all the roots of

P(x) we can factorise P(x) over real numbers P(x)= (x - ot)(x —20)(x —B), but
a=-1,20=-2,B3=1.Hence P(x) = (x —1)(x +1)(x +2). Furthermore, the sum of

roots o.+20.+PB=30t+p . Hence 300+B=-a=> a=—(~1-3+1)=2,

5 Solution
(a)

. (i) Using De Moivre’s theorem: z” =cosn®+isinn® and z™" =cosnb—isinnd.

Therefore z" +z™" =2cosnB.

.0 . -— -_— 4
(ii) Since 2cos®=z+z"', then 16cos’0= (z+ z ‘) =z +47  +6+4z72 + 774,
But 2 +77 =2cos4H and 22 +22=2c0s26. Hence

16cos* 8 =2cos40+8cos20 + 6. Thus cos* 6 = %(00546 +4c0s20+3).
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(b)

y= 4-x2

(4—x2 3/2
e
( _ 2)3/2
The slice has volume 3V = A(x)8x = —-—5——5x . The volume of the solid is
& (e N 2 2 2 32
v, 3o e

Substitution x =2sin@, dx =2cos@d¢ gives
/2 39 /2 /2 R
V=16 J (l-—sin2 (p) cos@de =16 Jcos"cpdcp =16 J [—%(l+cos2(p)] do
0 0 0

sin4¢ "
8

0

=3r.

x2
= 4“1 +2c0s2¢ +4(1+cos4p)]do = 4[-21(p+sin2cp+
0

the volume of the solid is 3 cubic units.

6 Solution
Dimension diagram Forces on P, Forces on P,
S N N, r
________ \ .~ N,
e L . r . ) 0
--------------------- \ LI P,
< ; P,
------------------- mg Yug

7SD Solutions Series

v




20

(a) The resultant force on P, is m* horizontally to the left, hence T = mw*l. (1)

The resultant force on P, is 1 Q’r horizontally to the left.

Its vertical component is zero, hence Tcos@=pg— N,. 2)
Its horizontal component is puQ’r, hence T'sin® = nQir. 3
. nQ*r _r r.. nQ’r _ )

i) 3):(2) >tanf=—— . But tanf=—= —= = N= -xQ%). It
YR Y Pt vl (LY

mustbe N20=g-xQ*>0=> QZ\/E—. Hence the maximum value of Q is \/E If
x x

Q reaches this maximum value, N =0, and so the particle P, loses contact with

floor.

2 b) 2
() 3):(1)=sin8=22T Bursing="o L ”Qz =>£=ﬂ(9) ' N=0=
mw’l L L I

ma@ Q
'frOm(2)T=——u—g-.But cosG:—x—:>T=E—g£.
cosf L X
.. L m{o :
b) (1) From (a), —_=— .
(b) (i) Fr -()(")1 M(Q)
L 04

Hence m=0,4; n=0,2; c0=Q=>—1—=O—’2:> L=2l.

But L+1=15=3l=15=1=05= L=1.

From (a), (i) T="8% Hence L=1;x=08 n=02= T:i-g.
X

" (ii) From 3) Q* =

T'si ,
Sme.But sin9=L, andelg:Q':i.Hence
nr L 4 4

' 5
=02 L=1= Q= %g = Q= __2_g . Hence the velocity v of the particle P; is

v=Q-1=>v=@-o,5=> v=211—\/§.

7 Solution

(a) P(x) = (x2 —‘az) Q(x) + R(X) ,

7SD Solutions Series




21

but deg R < deg(x2 - a2) =2= R(x) = bx + ¢ b,c are constants. So we have
P(x):(xz—az) O(x)+bx+c = P(a)=ba+c; (1)

= P(-—a) =-ba+c (2)
(1)+(2) =2c = P(a)+ P(-a)=c= %{P(a)+ P(-a)};
(1) —(2) =2ba=P(a)-P(-a)= b= 51; {P(a)- P(-a)}.
. 1 1
Hence the remainder R(x)= -z—a{P(a) - P(—a)} + E{P(a) + P(—a)} :
(i) Let n be even and P(x)=x"—a".Hence P(a)=a"—a" =0 and as neven

P(-a)=(-a)'-a" =0 So (x-a) and (x - (—a)) =(x+a) are factors of

P(x)= (x—a)(x+a)=x*—a’ is afactor of P(x)=> the remainder is zero.

(ii) Let n be odd. Dividing P by x*-a®,

P(x)=(x—a)(x+a)Q(x)+bx+c; b,c are constants.

P(a)=a"—a"=0=>ba+c=0; (3)
P(-a)=(-a)" -a"=-2a"=> —ba+c=-2a"; 4)
B +@) =2c=-2a"=>c=-a"; (3)-(4) = 2ba=2a"=b=a"".

Hence, the remainder is bx+c=a""'x—a".

(b) Axes, origin and trajectory Equation of motion: X =0, y=-g.

¥y Initial conditions: when =0, x= y=0;
15} g cy. L,y L
L@ ;g x=V ﬁ,y-V h

Or %I Iin
2 2 2
After ¢t seconds the particle is at position: x —Lt (1) y —L ,_§£ 2)
d V2 ’ 22
2
From (1) ¢ = igi Substituting this value of ¢ into (2), y=x _%; (3)
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r r g(r i
=2-20, y= I _20|-£[L-20]| =15; 4
x== 20, y=15= from (3) (2 ) 2 (2 ) “4)
. g r 2
r r
= — = —+20}-=1—+20 :15, 5
X 2+20, y =15= from (3) (2+ ) V2(2 ) (5)

2 2
3 _ & r i ) =0;
(5) - (4) = 40 Vz{(2+20) (2 0)}
40V?2 = g{(£+'20-—£+20) (1+20+i—20)}
2 2 2 2

40V* = g (40r)
V o=gr.

Hence, substituting V? = gr into (4),

2 2 2
{7 _20l-X{Z_20] =15; +[ Z=20|~{ Z-—20r +400 | =15r, Z=~15r—400=0,
2 r\2 2 4 4

rP—60r—1600=0,r=30++900+1600,r =30+50 = r =80m.

8 Solution

(a) Show that 7" +15" is divisible by 11 forodd n=>1.

Solution
Let us introduce f(n)=7"+15". It is easily seen that
F(n+2)=7"+15"2 =7*(7" +15")—49-15" +225-15" =49 f (n)+176-15"

‘For n=13,5,... let the statement S(n) be defined by:

f(n) isdivisible by 11 forodd n2>1

Consider S(1): n=1, f(1)=7+15=22=11-2= S5(1) is true, since f(1) is
divisible by 11.

Let k be a positive odd integer. If S(k) is true for all integer k, then f(k)=11-M
for some integer M. Consider S(k+1).If S(k) is true, we get

Fk+2)=49f(k)+15*-176 =49-11M +15"-16-11=11(49- M +15*-16).

Since 49M +16-15" is integer, we see that f(k +2) is divisible by 11. Hence for all
odd positive integers k, S(k) true implies S(k+1) is true. But S(1) is true.
Therefore by induction, S(n) is true for all odd positive integers n: 7" +15" is
divisible by 11 for odd n>1.
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) (i) (JZ—JZ)220=>a+b—2JEzo=>a+b22JE (equality iff a = b).

(a+b)2 (a+b)2
(ii)From(i)a+b22\/E=>abs—4—— and 2abs—2—
Hencel+l=b+a2 a+b7= 4 =4,
a b ab (a+b)' a+b
4
2
2 (a+b)

@ B (@) T (@) {(a+b)2}2

2, 2 2 a+b) -
1,1 _B+a®_(a+bf-2ap_(a+b) —"— :16(1_1)28’
4

(equality iff a=b=1/2).
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Specimen Paper 3.

1 Solution
) 3x
(i) Let us sketch the graph of the function y=— 1
x —
Features
) . 3 )
e Itisclear that y(—x)=—y(x), that is, the function y = le 1s odd, and
x —

y =0 at x=0, Its graph has point symmetry about the origin (it suffices to
construct the graph for x >0).
e y—> -0 as x—>17, y—>+o as x—>1", y> 0" as x— +e
e Domain {x: x<-1, or —l<x<lor x>1}

Range {y:—co< y < +oo}

Y

x:l-—l x=1

() X =2 = 3x-2x42=0 = x= __ 1,
x“ -1 4 2

Using the graph, let us solve the inequality a 1 > 2. Itis easily seen that the

solution is the set {x:—l<x<—% or 1<x<2}.

3 +1 . .
(i) If y= —2—x—1- then k= y'(x;)=-3 al > 1s the gradient of the curve. At the
x p—

2
0
(x3-1)

origin x,=0, and k =-3. It is clear (see Figure) that the set of the values of the

negative real number k for which the equation = kx has exactly one real

x2-1
solution is {k: =3<k<0}.

(iv) The desired area S can be obtained as the integral
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S = J——E——dx .
o X —1
Using the substitution 1-x? = i, we get

Y4
§=2 ﬂﬁ[lnu]“=3(1n3—1n1)=31n3.
29w 2 2 4 2 4

2 Solution
(@) Let us express —————— as a sum of partial fractions.
(x+ 1)(x +1)
+
Let x+3 =2 4 bx+c a,b,c constants.

(x+l)(x2+l) x+1 x*+1°
Then x+3:a(x2+1)+(bx+c)(x+1).

Putting x = -1 gives a=1.
Equate coefficients of x*: O=a+b=>b=—1.

Equate constant terms: 3=a+c=c=2.

Hence I = J’-(——'Eﬁ——dx = I

1 2—x
x+l)(x2+l) dx+f Ll

x+1 x“+1

4

27X = —lfﬂdx+2j;—éx—=—-;—lnlx2 +1l+2tan"x, and

But
'[x2+1 27 x+1 241

| D ne+1].
x+1

x+1

vx*+1
(b) x = 4sin?@ = dx = 8sinBcosOdB, O =sin™ iz—’i = 8(0)=0, 6(2)= % . Hence
2 4
I= ‘Hx(tl—x)dx = J \Psinz 9-(4—4sin2 9)85in 8cosBd6 =
0 0

n/4

-
j2sin9~2cosﬁ-85in8cosed9 =8 Isin229d9 =
0 4]

+2tan"' x.

Hence I = lnlx + ll ——;—lnlx2 + 1| +2tan' x=1In

/4

,[ 1-cos46

w4

n/4
8 de=4jde—4jcos4ede=
4] [}

0
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. /4
[49];/4 _{451246] —

0

(c) (1) Use integration by parts:

I, ::j.xnexa'x=[xnex];__j'(xn),exdx: e—nj[x""e"dxze—n[n_l,
0 0 5

(i) I, =je"dx=[e’]:)=e—-l.From (I, =e-nl_.

0
Hencen=1= I, =e—I,=e—(e~1)=1,
n=2= I,=e-2l,=e-2-1=e-2,n=3= I;=e-3],=e-3(e—-2)=6-2e,
n=d= I,=e~4l;=e—-4(6-2¢)=9%-24.

172
Let = Ix“e“dx . Use the substitution u=2x = dx = —(-]23 =
0

' 1 4 1
1 1 —24
1= |+ e Moty Ly 22002
) 2 2 32 32

3 Solution

The normal to the hyperbola xy=c’ at the point P(ct,f) has equation
t

1
tx—-)izc(tz -——7).
t t

(i) The point Q(cq,ﬁj lies on the normal. Hence tcq L c(t2 —LZJ Therefore
q Iq t

(tq—t")(H;}l—qj:O. Since Q# P, then g#t¢. Thus q-_-—ti3 and @ has

coordinates (——%,—cﬁ). Similarly the normal at Q cuts the hyperbola again at
t

R(cr,ﬁj with r = ——l— =1?. S0 R has coordinates (ct"’,—é—).

r q3 !

2

~ 1
(ii) The normal at P meets the x-axis at A(;(r —t—z}O). The tangent to the
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hyperbola xy =c? at the point P(ct,i) has equation x+2>y=2¢r. Hence the
t

. 2 . .
tangent meets the y-axis at B(O,—C). If M(x,y) is the midpoint of AB, then
t
c{, 1 c c y(ct
x=—|t" - and y=-—. Thus t=— and, consequently, x==] ———|.
2t t t y 2

Therefore the locus of M has equation 2¢’xy = ¢* — y*.

4 Solution

(@) Let z=x+iy, where x,y are real. Then x* + y +2ix -2y =12+ 6i. Equating
real and imaginary parts, x’+y>-2y= 12 and 2ix=6i. Hence x=3 and
y? —2y—3=0. Therefore the possible values of z are 3—i and 3+ 3i.

(b) [-1|=1 and arg(~1) = 7. Hence the complex 5th roots of —1 all have modulus 1

and by De Moivre’s theorem one complex 5th root of —1 has argument % , the others

being equally spaced around the unit circle in the Argand diagram by an angle —2—51£

. . T . 3n [ 3n f T
That is z, =01s§, Z, =01s—5~, z3=-1, g, =01s(——3—), Zs =c1s(——5-).

(i) Let P, represent the numbers z,,
k=1,..5. Since OPF, =1 and

ZP,OP,,, =3575, k=1..5, (B=PR),

then P,P,,, is independent of k. Hence
B P,PPF, is a regular pentagon. Area of
this pentagon is five times area of AP,OF;.

. .2
That is area of the pentagon is 5-%sm?n.

(i) We have well-known formula

2 +1=(z+1)(z* -2’ + 22 — z+1). From the other hand

2 +1=(2-2,)(2=2))(z2~ 2,0z~ 2,)(z~ 2,) . Therefore
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2 2 T 5 3
-+ —z+1=(z- g )z—z)N2- 2, (2~ 24) =(z‘ —2zc053+1)(z' —2zcos—51t—+1)

e s, g, 11 , 1 1
Since z* -2’ +z —z+1=72°|z"—z+1—-—+—|=2"|| 2+—| —| z+—|-1/, then
2
A4 Z V4

1Y 1
z,,25,2,,2, satisfy the equation (z+—) —(z +—J—1=0. But for the complex
z z

1 T
number on the unit circle z+— =2Rez. Therefore Rez, = cos—5— and Rez, = cos—35£
: z

are the roots of the equation 4x?>-2x-1=0. Using quadratic formula,

1
xl=%(1+\/§) and xZ:Z(I—Jg). Since cos%>ﬁ0 and COS%E<O, then

coslst— = i—(l +J§) and cos%’t = %(I—Jg) .

5$olution

(a) If (x'+1)2 is a factor of P(x)=x’+2x’+mx+n, then P(x):(x+1)2Q(x). From
here.P(§1)=O and P’(~1)=0 (-1 is a double root).

P(-1)=0 = 5-4+m=0= m=-1.

P(-1)=0 > -1+2-m+n=0=>n=m-1=n=-2.

(b) (i) If o,Bandy are roots of the equation x* — px—g =0, then a+B+v=0 and

~of +oay+py=—p.From here 0=(OL+B+Y)2=(a2+B2+Y2)+2(aB+ay+By):>

o+ B2 +yr=-2(of+ay+By)=2p.

(if) o’ - pa—g=0, (Since a,Bandy are the roots of the given equation)
B’~pB-g=0,
Y -py-q=0.

Summing these equalities, (OL3 +B°+ 73) ~p(o+PB+7v)-3g=0.
But from (i) oo +B+7vy =0, hence o* + B’ +v* = 3q.

Furthermore, o’ — pa® —ga® =0, (since the equation x? (x3 - px — q) =0 has the

Toots BS—pB3—qB2:O) a,B,Y)O)O)'
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Y - py’ —qy’=0.

Summing these equalities, (oc’ +B°+ y’) =p (a3 +B* + 73) +q (az +PB*+ yl) . But

o’ +B*+y*=2p and &’ +B’ +y’ =3q. Hence &’ +B°+v° = p-3g+¢q-2p=5pq.

()

s(x) s(x)
s@)

poR
=)

The slice is an equilateral triangle with area of cross-section A, thickness 6x .

A(x)= J?T.::(X)

x2

=2.2,]1-—
S(X) 16

2
A(x) =443 1-=—|.
16
The slice has volume
2
8V = A(x)8x = 4@(1 —’1‘—6]& .

Then the volume of the solid is
4

x—0

4 2 4 2 3 64
V=lim Y43 1- 2 |ax =43 1-Z |dx =43 x - 2| =22,
in f( 16) Q( 16] [x 316), V5

-4

the volume of the solid is -6—4 cubic units.
NE)

6 Solution
(a) Dimension diagram Forces on train
[T
:;af
' Cl m
h=01 d=15, r=>500. g

7SD Solutions Series

<y

29




30

2

Let v be an unknown velocity. The resultant force is horizontally to the right.

-
Its vertical component is zero, hence TcosO@=mg. (1
2 ' 2
Its horizontal component is ™Y hence Tsin® ="~ 2)
r r
V2 :
(2): (1) > —=tan8= v’ =rgtan6.But tanf = ——.
rg d* —h?

Hence v = rg—ﬁ. Therefore,

' 500-9,8-0,1
F=500 k=0 d=15 g=98= v2 =028 Ol 399305 2181 ms".

Y152 -0, ‘

(b) Choose the initial position as the origin and initial direction of motion as positive.
Equation of motion: ¥ =—k (1 + vz) :

Inifial conditions: t=0=> x = O,v=u.

(i);'r'=—k(l+v2) =v=—k(l+V')=> —5=-kdt= tan"'v=—kt+C, Cisa

1+v
constant.

- 1 - - C
t=0,v=u=>C=tan" ' yu=r= Z(tan "u—tan™ v). As the particle is brought to rest,

. i | -
its velocity is zero. Hence v=0=>t = ~ tan ‘u.

(i) %= —k(1+ vz)

2
= vi‘iz_k(u_vz)::, va:—kdx::» ledv:—kx+A, A constant,
dx 1+v 29 1+v

:>lln|l+v2|=—kx+A; x=0,v=u=> A=11n|1+u2|; =
2 2

x:l{llnll+u2|——1-ln|1+v2|}:> x:LIn[I-HiJ; v=O:>x=Lln(1+uz) 1s
k12 2 2k \1+v 2k

the travelled distance.
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7 Solution

(a) (i) £LBAC=ZBDC as these angles have a common arc BC. But also

Z ABE = ZDBC. Hence the triangles A ABE and ADBC have equal angles, and so
these triangles are similar to each other. Furthermore, £ ADB=Z ACB= ZECB, as
these angles have the common arc AB. Now

Z ABD- £/ EBC=(ZABE+ ZEBD)—(£EBD+ ZDBC)= ZABE- Z/DBC=0=
ZABD = ZEBC. Hence the angles of the triangles A ADB and ABEC are equal, and
so they are similar.
(ii)
Let AABE and ADBC be similar Let AADB and AEBC be similar
AB EB AE
— = =
DB BC DC
AD AB DB
— = =
EC EB BC
= AD-BC=EC-DB )
M+
=> AB-DC+ AD-BC=DB-AE+EC-DB= AB-DC+ AD-BC=(AE+EC)-DB.

= AB.DC=DB-AE (1)

But AE+EC=AC.Hence AB-DC+ AD-BC=AC-DB.

(b)
C Consider a cyclic quadrilateral APBC. From (ii)
AB-PC=AC-PB+ BC-PA.But AB=AC=BC. Hence
PC=PB+PA.
®
B
P
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8 Solution

(@

' 1
(i) OA=0B= LOAB=Z0OBA = LOAB= 5(180°—4AOB)=
l(1 80°—60°) = 60°. Hence OAB is an equilateral triangle.

Analogously, OBC and OCA are equilateral. Hence
~ AB=BC=CA=12. Let P be the projection of the point O onto the

plane of the table, i.e. onto the plane of A ABC. Hence
ZOPA = ZOPB = Z OPC =90°. So the triangles OPA, OPB and OPC are right-

angular. They also have the common side OP, and OA=0OB=0C.
Hence AOPA = AOPB=AOPC = AP=BP=CP = CD and AR are medians of

AABC= PD = %CD and AD = %AB = 6. Furthermore, A ADC is right-angular
— CD*=AC>—AD’= CD’=12-6>= CD =+/108;
PD=%CD:> PD = 1—2§=JE.

A ADP is right-angular = AP’ = AD> +PD* = AP’ =6 +12= AP*=48.
A APO is right-angular
— OP? = OA” — AP> = OP*> =127 — 48 = OP = /96 = OP = 4+/6 .

oP 46
ii) tan Z OAP = —— = =2.
(it) tan P «/—

(b) (i) According to a well-known Laplace probability formula the desired probability
of that the six scores obtained will be 1, 2, 3, 4, 5, 6 in some order is equal to

6!
=€ " 322" , since in the denominator we have the total number of the elementary
outcomes that is 6°, and the numerator represents the amount of successes being
equal to 6!.

(ii) It is clear that the product of members is even if and only if one of them is even.

Let B be an event of that at least one of the numbers is even. Hence, if we again use
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the Laplace formula, the desired probability is given by

P(A)=1- P(K) =1- 26- = l——l— = LE because the event A
6° 2° 64

(opposite to A) means that all the numbers are old.

(iii) The probability of an event B having two scores consistently of exactly two 6’s is
equal to -61—2 Let C be an event if the other four scores were all odd numbers, and

4

P(C)= %4— . The events B and C are independent, hence P(B-C)= P(B)-P(C). To
calculate the desired probability P we should take into account the number of ways

6 i .
(2] to choose two tests with realisation of a score of 6. Hence

6 1 3*(6) 1 1 6! 5
P_—_PB.C. = —t— S e———————— D ——
( )(2) 6> 6° (2) 36 2% 2141 192

(iv) Let D be an event if the first five throws exclude 6, event E implies that the first

five throws include three odd numbers, and F be an event if the last test gave 6. Hence
the desired probability P(D-E-F)=P(D-E)-P(F) ( DE and F are independent).
Moreover P(D-E)=P(D)-P,(E), where P,(E) is a conditional probability of the

55

event E after realisation of D. According to the Laplace formula we get P(D)= &

(1,2, 3,4, 5 only appear), P(F)= —é— . To calculate P,(E) let us employ the Bernoulli
formula implying 5 tests. Probability of success in each test (odd number appears) is

equal to p=%,q=l—p=%.Hence

5 3 2
P,(E)= @) P gt = (3)@-) (%) , and finally,

5 513221 5 5
MOER) G s s e 6
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Specimen Paper 4.

1 Solution

(a) (i) Let o be a repeated root of P(x) =x’—6x>+9x+c, c real. Hence P(a) =0

’

and P(o) =0

’

+3
P(a) =0 = 30’ -1200+9=0= a=93—:> a=lora=3;

a=1= P1)=0=1-6+9+c=0= c=—4;
a=3= P(3)=0=27-54+27+c=0= c=0.

(i) Let B(x) be P(x) with c=0 and P,(x) be P(x) with c=—4.

’

P(x)=0= x=0or x=3; B(x) =0= from (i) x=1or x=3.

Hence B(x) =(x=1)(x—3). Fromhere Bj(x)>0 as x & (~e0;1) U (3;+c0) = here

R(x)T, B(x)<0 as xe(-1;3)= here RB(x)l.Hence x=1 is a maximum point of
R(x), B(1)=1-6+9=4,and x =3 is a minimum point of F(x), B(3)=0.

From the above we can sketch the graph of P(x). Taking
into account that P, (x)= B(x)-4,

we can also sketch the graph of P(x). P(x)- B(x)=c=>

P(x)> By(x) if ¢>0, and hence for ¢ >0 the graph of

P(x) lies above the graph of By(x).

P(x)-P,(x)=c+4= P(x)< P,(x) if c <-4, and hence
for ¢ <—4 the graph of P(x) lies under the graph of P,(x).
So, as seen from the graphs, the equation P(x) =0 has only one real root for
¢ € (—o0;—4) U (0;+c0).
(b) (i) Itis clear that the domain of the function y = cos™' z is the set
{zz-1<2z<1}, aﬁd the range is {y: 0 < y < w}, besides cos™(-1) =7, cos™'(+1)=0.

Furthermore, the domain of the function z =e* isthe set {x: —co < x < +o0}, and the
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range is {z: 0 < z < +oo} . Hence the domain of the function y =cos™'(¢*) must be the
set {x: —eo < x £0}, since z =¢" must satisfy the inequality 0< z<1 as the
intersection of {z: —1< z<1}and {z: 0 < z <+oo}. As a result, the range of the

function y =cos™'(¢*) is the set {y: 0< y <®/2},

since cos'(e®)=0, and cos!(e*) > /2 as }’A%

X -0, ‘\ r=
. . -1, x y=cos"(e‘)

(i) Hence the graph of the function y =cos™ (e*)

[N

Y ~

(0,0)
is represented by a monotonously decreasing curve.
2 Solution
f (a) x2+2x+5=(x+1)2+4=>a=1,b=2;
1 1 1
1
I= J j dx = —j dx . Use the substitution
| X +2x+5 (x+1) +4 4°

2
x+1

=== dx =2du, u(-1)=0, u(1)=1. Hence

1 1
I=l,[ zl 2du=[ltan"u] =-l =
41 u+1 2 . 2

&
o |a

(b) Using integration by parts.

jl‘”‘ dx = [Inx(2x) ax =21nx.J;_j(1nx)'2J§dx=2J§1nx—j%dx=2&1nx—4&.

(c) () Let I = J ————dx Let us express _t as a sum of partial fractions.
x(m—2x) x(n—2x)
1 a b
Let =—+ , a,b constants, Then 1= a(1t - 2x) +bx.
x(n-2x) x m-2x
1
Putting x =0 gives a=
T
| Putting x = I gives b= 2
2 T
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1 /3 2 1 In 2 l "
Nt — 242X
Hence I = EJG —dv+ = j S-dv= [;1n|le6 + {;—_Z——L _

1 2In2
-1—1n2—l1r1—= il
T T 2 T

2
dx: u=——x= du=—dx, u — |=—, u — |=—. Hence
(i) Let J = J—“(.,; ) T T “(6) 3 u(3) 6

cos’ x = sin’u
L T

mx T — 2x)

/3
_ ,[ cos® X+Sm X dx =J BN SRy SN J:izl—nz‘-,as =22 from (i).
. TC 2x 2 T

3 Solution

(a) Let P(x,,y,) be the point of intersection. Then

P lies on the ellipse: 4x? +9y; =36, o)
P lies on the hyperbola: 4x} - yi =4. (2)
(D)= (2)= 10y =32 = y; =32, 3
(D) +9%(2) = 40x; =72 = x; =18. (4)

Since x2 +ys =35, then the points of intersection of the ellipse and the hyperbola lie

' 4
on the circle x> + y? =5. The tangent to the ellipse at P has gradient g, = —9ﬂ
Yo

4
and the tangent to the hyperbola at P has gradient g, = Therefore, using
Yo

16x? 16-18
(3),(4) we obtain g =m0 =-]1. Hence the ellipse
8 8= TG T T, ip

4x*> +9y* =36 and the hyperbola 4x* — y? =4 meet at right angles.

2 2

yz =1 at the point P(asec0,btan8) has

2
a
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2 2
xsec® ¥ tzne =1. Let e be the eccentricity of the ellipse 5-2—+%2— =1
a

and the tangent to the hyperbola passes through the focus S(tae,0) of the ellipse.

’ _ 52
Then tesec@=1 and consequently Itan9|=\/secze— =‘/—17— = I—e =—b-.
e e

ae

equation

Hence the tangent to the hyperbola has equation +2 Yot xX+L=1.So

ae ae ae ae

the tangent is parallel to the line y=x or to the line y=-x. Then the point

2 2
P(asec8,btan8) has coordinates (tﬁ,z—) or (tﬁ,—?——\J. Therefore the point P
e ae e ae

: . : a a .
lies on the directrix x = — or x = —— of the ellipse.

e e
4 Solution
(a) 7, = 7+4f _ (7+4z.)(3+21.) _ 21-8)+(14+12)i —142i
3-2i (3-20)(3+2) 9+4

Let A represent z; =1+2i. Then XP represents
2~z and |z~z|=+5= AP=+/5. Hence P
lies on the circle centre A(1,2) and radius \/5— . So
the locus of P has equation
(x-1D*+(y—2)* =5. Let Q be the intersection

of the line OA and the circle. Then the greatest

value of |z| is 0Q = 245

(b) Let A(0,1), P represent i,z respectively. Then |z—i|= AP, and Imz is the

distance from P to the line y = 0. Hence the locus of P is a parabola, focus A(0,1)

. . . . 2 1
and directrix y =0, with equation x° = 2(y—5)=> y =-:12—(x2 + 1). The tangent to

the parabola at the point P(x,,y,) has equation xx, = y+y,—1. Since the tangent

passes through the origin, y, =1. Thus the gradient of the tangent is x, =1 or
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. T 3r
x, = —1. Therefore the set of possible values of argz is 2 <argz< i

(¢) Let the desired polynomial be P(x)=x"+d, x> +dx+d,, d,,d,,d, constants.
a+b+c=-3=-d,=-3=d,=3; abc=—6=—d,=—-6=d,=6;
(a+b+c)=——3=>(a+b+c)2=9=>(az+b2+c2)+2(ab+bc+ac)=9=>

_29:_10; ab+bc+ac=-10= d,=-10.

ab+bc+ac= 2
Hence B(x)=x’+3x"—10x+6.
By inspection B(1)=0= (x—1) isa factor of B(x). Use polynomial division

x4+ 4x-6

x—l>x3+3x2—10x+6

x* - x?
4x*~10x+6
4x* — 4x-

—6x+6
6x+6
0

Hence B(x)=(x—1)(x*+4x—6); B(x)=0= x=1or X’ +4x-6=0= x=1 or

x=—2iJl_0. So the roots a,b,c are 1,—-2i\/1-0.

5 Solution
(@) z=(1+ic)® =1+6ic—15¢* = 20ic* +15¢* +6ic® ~c®. If z is real then Imz=0.

Hence 6¢c—20c® +6¢°=0= c(3c4 ~10c? + 3) =0= c(c2 - 3)(8 —%j =0. So there

are five real values of ¢ for which z isreal. They are 0, £+/3, i‘L.

(b) P(x)=x*+bx’+cx’+dx+e, b,c,d,e real, is the polinomial with real
coefficients. Hence

z,=(2+1i) isazeroof P(x)= z,=7 =2-i and is a zero of P(x) as well,

z3=(1-3i) iszeroof P(x)= z, =7, =1+3i and is a zero of P(x) as well.
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The product of the roots of P(x) is
2222, = (22)(6%) = o[ |a] = (4+1)(1+9)=50= e=50.
The sum of the roots of P(x) is

3 +5,+2,+2,=(2,+%)+(z,+%)=2Rez +2Rez; =2-2+2:1=6= b=-6.

(©)

The typical cylindrical shell has radii x, x +dx, and height
h(x) = -2L(e" + e“‘)——%(ex - e“’) =e *.
This shell has volume
8V = n[(x +8x) - xz]h(x) =2mxe *8x  (ignoring (8x)%).
1 1 1
V= gxi_lg 2 2nxe *dx = 21tj xe*dx = -—21th de™ = —21:[xe"r + e"’]:)
x=0 0 0

= 21:(1 - 2e“).

the volume of the solid is 21:(1 - 2e"1) cubic units.

6 Solution
(i) Origin is the point of projection. T is the positive direction.
Initial conditions: =0, x=0, v=yv,.

Equation of motion: mx = -—mg —mkv’.

i=—(g+b*)= %:—(g+kv2)=>—dx= v = —dx
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1 2
-x+C= Eln(g + kv ), C constant.

x=0, V:Vo:> C=—271n(g+kvo):>x—2—kln(-mv—2— .

1 kvy
Let h be the greatest height, then x=h, v=0= h= —ilzln(g—+—lj. D
: g

(ii) The origin is the highest point. { is the positive direction.

Initial conditions: t=0, x=0, v=0.

Equation of motion: m¥ = mg —mkv?.

172
Terminal velocity: As ¥ — 0, v — (%) ,and hence g —-kv?>>0.

7

1,2
Jf:(g—kvz):%z(g—kvz):dxz Y dv=>dx=_—l—(§—£v—)—dv=>

2

g—kv 2k g-kv?

_-l 2
x+ C—z—kln(g—kv ) C constant.

1 1 g
=0,v=0= C=-—Ing= x=— | .
=LY 2% 8T T n(g-—kvz) )

As the particle reaches the ground, x=h.

x=h,v=y,=> from(2)h=Lln g - | = from (1)
2k \g-kv/

etk ) L f &
2k g 2k \ g—ky,

= (g+kv)(g—bv?)=g".

7 Solution
sin’0 + cos’ 0
in’ 29 T 29 2
(a) (i) cosec20=— I__sin .9+cos ®__ sin’e _l+cot’® ,
sin 26 2sinBcosH M 2ot
sin’@
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cos’0—sin’6

cor20= 520 _cos’0-sin0 " nTp _ _cor’-1
sin 26 2sinBcosO 2sinBcosb 2¢0tH
sin’ 0

. 2 2q
1 Hence cosec206 +cot26 = 1+cot”@ + cot’6-1 = cosec20+cot20 =cotB.
! 2cotB 2cotB

(1)
(11) Using (1),

cot£=cosec 2-E + cot Z-E =>c0t£=cosec£+cot£=\5+1.
8 8 8 8 4 4

Analogously, cotE— =CO0S ecE + cotlt- = cotit- =2++/3.From (1
12 6 6 12

cosec20 =cotB—cot26. Hence cos ec2—7t = cot% - cot-?—;_t ,
4r 2n 4 8n 4r 8n
cosec— = cot— —cot—, cosec— = cot— —cot—,
15 15 15 15 15 15
7t 87 16n . ...
cosec—- = cot— — cot——. Adding together these four equalities,
15 15 15
2n an 8n 16w 4 16r 19 T
cosec—- + cosec— + cosec— + cosec~—— = cot——cot—— =cot——cot| T+ — |[=
15 15 15 15 15 15 15 15
cotit——cot£=0.
15 15
(b)
(i) ZAOB=qa, ZBOC=0+8,ZCOD=0a+2B, ZDOA=0a+3=
ZAOB+/ZBOC+Z£COD+Z£LDOA =40 +6.
P From the other hand
B 0o p £AOB+Z/BOC+ZCOD+£DOA=2m.
/ Hence 4a+ 63 =2n= 20+33="7. )
But

C
ZAOB+/DOA=20+33= LAOB+£ZDOA=1n=>

the points B, O and D lie on a straight line.
(i) Let S, .5 be the area of the triangle OAB. If ZAPO =90°, then

S,0as =1AB-OP, but AB = 2AP = 2rsin— and OP = rcos—. Hence
2 2 2
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1 [0 4 (04 r2 r2
S,oas = 5[2rsin —‘,Z—)rcosz = S,oms = —2—sin o. Analogously, S,opc = Esin(a +B),

2

. r2 .
S,oco =%sm(a+2B) and S, pa :3—51p(a+3ﬁ). As

Sascp = Saoas TSsosc FSa0co TSao0pa » WE have

3B

(sma+sm OL+B)+sm(a+2ﬁ)+sm(a+3ﬁ)).From () a—zcz___
. (n 3BY . (rm 3P . (m 3B (3B
SABCD:_2—' Sln(‘—?"—-? + Sin E—-E"FB + S1n E——2—+2B + Sin E-—?+3B =

2 a
Sasco = (COS%-FCOS%-FCOS%-FCOS%Q) = Sapco = "I(COSEZE+005%):

rz(cos(ﬁ + %) + cos%) = rz(cosﬁcos% —sin Bsin % +cos %) .

But cosE—sinEsinB:cosE—sinEQsinEcosE:cosE 1—2sinZE =cosEcos[5.
2 2 2 2 2 2 2\ 2 2

%’a
9
r\)[“

B

' 9,2
Hence S ypcp =2r cosBcos—z—.

8 Solution

@)If w=1and u, =3u,, for n22,
(i) show that u, <3 for n=1.
For n=1,23,... let the statement S(n) be definedby: u, <3 for n21.
Consider S(1): n=1, u =1<3= S§(1) is true. Let k& be a positive integer. If S(k)
is true for all integer k, then u, <2 for k21. Consider S(k+1). If S(k) is true,

we get
Uy = 34, =\/?_’\/:‘k_<\/§\/§=3,

because of \/Z <+/3, and u,,, <3. Hence for all positive integers k, S(k) true
implies S(k+1) is true. But S(1) is true. Hence by induction, S(n) is true for all
positive integers n: u, <3 for n2>1.

(i) Deduce that «,, >u, for n>1.

For n=123,... let the statement S(n) be definedby: u <u,,, for n>1.

Consider S(1): n=1, u<u,sincey, =1, u, =«/§ . Hence S(1) is true. Let k& be a
positive integer. If S(k) is true for all integer k, then u, <u,,, for k>1. Consider
S(k+1).If S(k) is true , we get

Uy =3t <3l =Wy,
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because of \/74: < ,/u,m ,and u,,, <u,,. Hence for all positive integers k, S(k) is
true implies S(k+1) is true. But S(1) is true. Hence by induction, S(n) is true for

all positive integers n: u, <u,,, for n>1.

n+l

a’+b*

(b) Notice that (a - b)2 >0=a’+b*-2ab20= ab< and analogously

2 2 2 + 2
bcsb+c , casS I (1)
2 2
Summing these inequalities,
we get ab+bc+ca<a’+b*+¢* (equality iff a=b=c). )

Exchanging in (2) aby a’®, b by b and ¢ by ¢? yields
a*+b* +¢* 2 a’b* +b’ct + .
Using (1), we obtain

2 2 2 2 2 2
abC(a+b+C)=a2bc+b2ac+c2ab3a2(b ;C )+b2(a ;—C )+c2(a ;‘b ):

a’b® +b*c® + a’c? (equality iff a=b=c).
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Specimen Paper 5.

1 Solution

(a) Let us sketch the graph of the functi.on y= 3x* —4x*—12x% . 1tis easily seen that
y —> +o as x — —co,and y = +o0 a8 x — +oo. Find the roots of the equation
0=3x*-4x~12x*. As 0=x*(3x*> —4x —12), the roots are

x=0, x=(2+210)/3.

YA
Find the turning points: _ &
| , 3 2 (0.0) / J
1. Y(x)=12x"-12x"-24x =0 = >

J P-x2-2x=0=>x=-1,x=0,x=2 (—1,-5)

y(~1) = =5 (maximum),

y(0)=0 (minimum), (2.-32)

" y(2)=-32 (maximum).

I ‘ ' (i) If & belongs to the set {k: —32> k}, the equation 3x* ~4x> -12x2 - k=0 has

no real roots.

‘-i} | (ii)) If k£ belongs to the set {k: —32 <k <=5 or k > 0}, the equation

i 3x* —4x® —12x* =k =0 has just two distinct real roots.

(iii) If k belongs to the set {k: —5 <k <0}, the equation 3x* —4x>—-12x2 -k =0

has four distinct real roots.

(b) (i) Let P(x)=3x*-4x’-12x"—k . Then
P1)=0=3-4-12-k=0= k=-13.

Hence (x—1) is a factor of P(x) =3x* —4x* - 12x2 +13.

Using the following polynomial division,

i T R e T

y T
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3x’~x*-13x—13  So P(x)=(x-1)Q(x), where

4 3 2
x—1)3x* - 4x’ ~1227 +13 O(x)= 3¢~ x* ~13x ~13.

3x* -3x°
s 0(0)<0, 0(3)>0=> 0<at<3;
-x’~12x*+ 13
P o 0(1)<0, 0(2)<0=2<a<3.
‘ —13x*+ 13 (if) P(x) has real coefficients, hence if z isa non -
a2
‘ =2 sero of P(x), then also P(Z)=0.
~13x+13
—13x+13 The product of zeros is equal to the constant term of
0 P(x) divided by the leading coefficient. Hence,
13
z 7.1 o=—
¢ 3

2 13 13 13 13 13
|| = =>— o lz|<\/; 2<a<3> — ;—3—<|z|< 35

=- 1’ < |z| J . The sum of the four roots is equal to the coefficient of x’

multiplied by —1 and divided by the leading coefficient. Hence,
(=D(=4)
3

4
z+z7+1+o= = 2Rez=§—1—a=>Rez=—é-—%;2<a<3=>

l—E< Rez<—1-—g=>—i<Rez<-§.
6 2 6 2 3 6

2 Solution

(a) We use the division transformation and then seek partial fractions.

2

: 3x-2
~1)(x-2)=x2~3x+2 ad =1 :
(-)(x-2)=x"-3x+2 G-DG-2)  (-D(x-2)
3x-2 a b
Let = + , a,b constants. Then 3x-2= a(x—2)+b(x—1).

(x—l)(x—Z) x=1 x-2

Putting x =1 gives a=—1. Putting x=2 gives b=4.

x’ 1 4
H ——dx=||{1-——— dx = |dx—
e“°‘°‘I(x-)(x 2) I( 1+x—2) J
(x—zr’

x—Injx-1+4injx-2|= x+In
x-1
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(b)

’

6) J'cos3 xdx = J(l —sin? x)(sin x),dx = J(sin x) dx - J'sin2 x(sin x), dx =sinx —

sin’ x

g \2
sin”' x ’ (sm x)

i) | Fdx:jsm-‘ x(sin” x) dx =—
- X

(c) Let 1 :JL
0

N

1+x

dx . Use the substitution x =4’ = dx =udu, x=0= u=0,

x=1= u=1.Hence

Loy, Lo, ~ ‘(1+u2)—1 _ ! |
I=£1+u22udu=2jo‘1+u2du—Z‘I—T‘_Tdu—Z‘([du»—Z‘([

u
1+4°

du=
1
[Zu]; — [2 tan™" u]:) =2-2 % =2- 12E Integrating by parts, J;—\-}—;ln(l + x)dx =

9

1
[2dxm(+x)] -2 ~dr=2n2-2/=2In2 -4+ 7.
0

3 Solution

(a) SmCC PO (xo ’yo) lles on the x'xl +&N‘
POQ, then @ b2

tangent

O(x,, )

xO'sz + }’02’1 =1.
a b’

Since By (x,,Y,)

Py(x,,y,) lies on the tangent

F,R, then YoXz  YoXa g, R(x,, )

at b?

Hence both Q(x,,y,) and

£
a b

R(x,,y,) satisfy

XoX . . . . . .
-°—2+—>;)°Ty = 1. But this is the equation of a straight line and is thus the equation of
a

the chord of contact to tangents from F,(x,,¥,).

2 2
(b) x*+2y* = 6ﬁ'—2—+y?= 1. The chord of contact to tangents from the point

. - 4
(4,~1) to the ellipse %+—y3—=1 has equation —6{—1=1=>2x—y=3. Let
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T(x’,y") be the extremity of the chord, then 2x’—y" =3 = y’=2x"—3. Since the
point T(x’,y") lies on the ellipse, thén x’* +2y’* = 6. Hence
2 4+202x" -3 =6=9x"7 -24x"+12=0= (3x'-2)(x"-2) =0.

Therefore the tangents to the ellipse x’+2y*=6 from the point (4,-1) are

%x—l:gy=6=>x—5y=9, with point of  contact T(Z—é) and

3
2x+2y=6=> x+y =3, with the point of contact T(2,1).

4 Solution

n .. T T
(@) z, =4(cos§+zsm§J=>]z||=4, arg z, =3

T .. T n
z, =2 cos——isin— = |z,|=2,argz, ==

3
1 7
=32, arg 4 =arg(z,3)+arg — =—n.But 7—ﬂ:>1t.Thcercefore
z, z, 6 6

2

the principal argument of A s 7?“ ~2n = ——Sg-.
2

(b) (1) Using the triangle inequality, lz + 2| < Iz] +2=3 and |z + 2| 22- |z| =1.

(i) Since z+2=2+cos@+isin®, then Re(z+2)>0=> tanarg(z+2) = sin@ )
2+ cos9

2tan(g-) 6
Hence tanarg(z +2) = ——*=. When 0 varies from —xn to ®, — varies from
3+tan2(9) 2

—g to 125 and, therefore, tan(-g-) varies from —eo to +o. Function (1) =

201’\

3+t

. . . . 1 . )
the interval (—eo,+c0) has its minimum value —— and its maximum value —=

3 3
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1 1 . i T
Hence ——— < tanarg(z +2) < —. Since Re(z+2) >0, then ——<arg(z+2) < —.
NE s J3 g BT =7

() If x> +1 is a factor of P(x)=x"+ px’+2x+g¢, then

P(x)=(x* +1)Q(x) = P(%i)=0;
P(i)=0=1-ip+2i+q=0=i(2- p)+(l+¢)=0. As p and g arereal, p=2 and
g=-1. Hence P(x)=x"+2x"+2x-1.

Use the polynomial division

242 ~1 = P(x)=(x*+1)(x*+2x—1). But x’ +2x~1=0=
2 3 3 _
* +l)x +2x7+2x-1 x=—li\/5:> x2+2x—1={x+1—\/§)(x+1+\/§).
x*+ 2 '
Hence
2% —x*+2x -1
0 422 P(x)= (%" +1)(x+1-+2)(x+1++2) and this is the
-x’- 1 factorisation of P(x) over R. As x*+1= (x—i)(x+i),
2
—x?

the factorisation of P(x) over C is

P(x)=(x—i)(x+i)(x+l—\/§)(x+l+\/§).

5 Solution
@ z=(O+5)T+2i)=(42-10)+i(12+35) =32 +47i. Since (6-5i)(7~2i) =7,

then (6 5i)(7~2i) =32—47i. It is clear |o|" = |6+ 5|7 +2i]". Therefore we obtain
322 +47% =(67 +5°)(7* +2%)=61.53.
(b) (i) o,B,y satisfy x*+2x—1.Hence —o,,—B,— 7 satisfy (-x)’ + 2(~x)~1=0=

—x*-2x-1=0= x*+2x+1=0.

(i) a,B,y satisfy x*+2x—1=0 and from (i) ~o,—B,—7y satisfy x*+2x+1=0.
Hence o,— 0, B,~ B,7,— v satisfy (x’+2x—1)(x’+2x+1)=0. Expanding,

xt+4x* +4x*~1=0.
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(i) o,B,y satisfy x*+2x—1=0.Hence o?,B?,y” satisfy (x"?)’ +2x"2-1=0.
Rearrangements gives x2(x +2)=1. Squaring and simplifying, x(x +2)’ =1=

X’ +4x*+4x-1=0.

A slice taken perpendicular to the axis of
rotation is an annulus of thickness &y with radii
-------------- i(), (), where r,(y)>5(y) and 5(y),

8y r,(y) are the roots of y =2r—r® considered as

a quadratic equation. The slice has volume
8V =m(r, +1)(r, —7)8y

-2 0 n(») 2 X y=2r-r?

r’-2r+y=0
n(y)

n,=1F4l1-y
n+n=2
n-h=2y1-y

SV =4mn\1-y dy.
1
1% =§;_r{(x) ; 4n.f1—y Sy =J4n1/1~ ydy.
y=0 : 0

Substitution y=1-y’, dy=-dy’ gives
0 yl}IZ 0 8T
V=-4rn "dy’ =—-4n =—,
o= 3] -

the volume of the solid is 871[ cubic units.

6 Solution

(i) Choose { as positive direction. Hence the equation of motion is ¥ = g —kv .

Terminal velocity: as x = 0,v — (%) . Hence the terminal velocity V = % .

(ii) Choose T as positive direction and initial position as origin.
Equation of motion: x =—g—kv.

Initial conditions: x=0,v=V.

Relation between x and v Relation between v and ¢
dv dv
—=—(g+kv); —=—(g+kv);
v—-=(g+k) i ()
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—dx=—" av; —dt = v ;
g+kv g+kv
' 1 + kv
cde=21-—8 gy, . —dzz—(g—ldv;
K\ g+kv k| g+kv
1
—x+C=%{v—%ln(g+kv)}, C constant; —'t+A=Zln(g+kv), A constant;

x=0,v=V:>C=%—%ln(g+kV):>

t=0,v=V= A=%‘ln(g+kV):>

d

- | ] +kV
x=%1n gtk Vv (1) t==In| £ : )
k g+kV k k \(g+kv
8
=-+V
From2) EX8Y c o ko From ) 8=V = 2 _
g+kv F-AN k v+V
\%
k
vV =2Ve =y =V(2e - 1). 3)

8
=4y
V- -
From (1) x:%(f)ln k +( v).As {—:V:>x=zln(v+v)+(v v):>

+V k k A% k
\% 1 v (V—v)
x=—In| —+— |+ ; 4)
k \2 2V k

v=0,x=H= H=%ln—;—+—‘£=> H=%(1—1n2). Using (3) from (4)

V.o (1 27"-1) V VvV, _, Vo,V V_ .,
x——;ln(5+ 3 J+————(2e —1):> x=;ln(e )+2——I2e =
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7 Solution

We first prove a preliminary result. Lemma. A ABD be inscribed in a circle. P is a
point on a minor arc BD. H, Y and M are the feet of the
perpendiculars from P to AB produced, AD and BD
respectively. Then A PYH is similar to A PDB.

Proof. Note the known fact, that the points Y, M and H are

collinear. ( The line YH is the so called Simpson line, see

Specimen paper 6, N 7 (b)).
We show that Z/PHY = ZPBD and ZPYH = ZPDB. Let PH=DB meet at S.

Triangles PMS and BHS are similar to each other, as they are rectangular and have a
HS MS . .
common angle £ PSD . Hence BS = s = the triangles PBS and MHS are similar,

as they also have a common angle £ PSD . From here ZPBS = ZMHS and hence
£ZPHY = ZPBD.

Analogously the right-angular triangles PME and DYE are similar, as

ZPEM = ZDEY = the triangles MEY and PED are similar, and hence

ZLEYM = ZPDE.

(1) In order to show that A XPK is similar to A HPY, we prove that ZHPY = £ XPK
Y\D and LYHP = £LKXP . The first step: £LHPY = ZXPK . The sum

of angles of any quadrilateral is 360°. Consider the quadrilaterals
XPKC and YAHP. Every of these quadrilaterals has two right
angles, hence £ XPK + ZXCK =180° and

T N\
4

~ 0

ZYPH+ ZYAH =180°. But £DCB + £XCK =180°. Hence

ZLXPK = ZDCB . ADCB is a cyclic quadrilateral, so
ZDAB+ £ZDCB =180° ( as opposite angles ) =
£4DAB+ £XPK =180°. So we have ZYPH + £YAH =180° and
ZDAB+ £XPK =180° = LYPH = LXPK.
The second step: L YHP = LKXP . It is sufficient to show that
LYHP+ ZXKP+ £YPH =180°. By lemma £ YHP = ZDBP and
L XKP = £XCP . Consider a cyclic quadrilateral DBPC. ZDBP+ £ZDCP =180°.
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But ZDCP=4DCB+ £ XCP=180°= LDBP+£ZDCB+ £XCP=180°. A
quadrilateral ABCD is a cyclic = £DCB =180°-£DAB. Hence

£ DBP +(180°-«£ DAB)+ £ XCP =180°

= £LDBP+ £ XCP=/DAB. But ZDAB =180°-£YPH, as the quadrilateral
AHPY has two right angles. Hence ZDBP + ZXCP =180~ ZYPH . As we saw
ZDBP = £YHP, we have ZYHP + ZXCP+ £YPH =180°.

(ii) A XPK is similar to A HPY, hence B)E = % = PX-PY =PH . .PK. Also
PH PY
| XK
PX = XK an LS =——, multiplying these equalities, PX K = ( )2 .
PH HY PY HY - PH PY (HY)

8 Solution

(a) (i) OP is a vertical pole = the triangle AOP is

rectangular

= A0=0P -cot ZPAO= AO=2.cotd5= A0=2m

Analogously, ZPOB =90°= BO = OP-cot £/PBO =
OP=2m, ZAOB=150°  BO=2.cot30°= BO=23m.
Consider the triangle AOB. By the well known theorem.

AB? = AO*+BO0?-2A0-BOcos ZAOB =

AB? =22+(2J§)2—2-2-2J§~cos150°=> AB?=4+12+8+3-cos30°=

AB2=16+8J§-§:> AB?* =28 = AB=2+7.

(ii) Let ON be the perpendicular produced from O to AB. If S is the area of the

AB-ON andS:OA-OB

triangle AOB, then S = sin £ AOB. Equating,

AB-ON OA-OB

5 sin ZAOB =

OA-OB
ON =

sin ZAOB; OA =2,0B =2+/3,AB =27, ZAOB = 150°=

2243 243 1 V3
ON = -sin30°= ON = —=-— = ON = —=m is the width of th 1.
NGl N1 2 V1 © cana
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(b) Every of six lines intersects with another five lines. Thus there are five points of

intersection on every line and every point belongs exactly to two lines. Hence on the
6-5 . o
whole there are - = 15 points of intersection.

(i) There exist 15 different points, 6 lines, and each line contains 5 points. An

elementary outcome is a set of three points. The total number of all elementary

15 !
outcomes is equal to (3 ): -1—12—% =5-7-13. Success is when all points lie on the one

line. The number of ways in which one can choose three points from the set of 5 lying
o 5
on each line is equal to (3)

The amount of lines is 6, hence the number of success is 6 times greater, that is,
5
5 6'(3) 6-2-5
6-} _|=6-2-5.The desired probability is equal to == E
3 (15) 5-7-13 91
3

(ii) Let A be an event that 4 points don’t lie on one line. Analogously one is able to

5
()
calculate a probability of the opposite event A, that is P(X) = —(TS]— .

4

5

6.()
_ 4 4 2 89
A A Al=1, P(A)=1- =]- z]l-—=—
sweget P( )+( ) we get P(A) [ISJ RE 51" 91

4
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Specimen Paper 6.

1 Solution

(@) (i) Letus show for the curve chy2 —-xt4 y2 =0 that [yl <1 and lyls lx[ Since

yr= le,weget Y| === <|x] or |s]= i <1 because vx*+12>1 and

i
x*+ Vit +1 x%+1

VxZ+1 2|x|.

(ii) The graph of X y?—x*+ y* =0 is represented by two curves y = -
. x“+1

and

. Each graph has point symmetry about the origin (it suffices to

X
- Vxi+1

construct the graph for x > 0), as both functions are odd. It is easily seen that

Hence we can deduce that the equations of the asymptotes are y = 1.
The tangent to the curve y = f(x) which passes through the point (x4, y, = f(x,)) is

givenby y=k(x~x,)+ y,, where k= f’(x,) is the gradient of the tangent.

If y=f(x)=t——— and f(0)=0, yA
¢ Vx? +1 , y=1
fi(x)=% ! F x , f(0)=+1,
| V241 2 +1) M
| R

we get the following equation of the tangents at the origin:

y==%x.

(b) (i) Letus sketch the graph of y= x> —3px+gq, where p>0,and g is areal
number. It is easily seen that y — —e as x > —,and y 5+ as x — +oo.

Find the turning points:

y A

y(x)=3x*-3p=0= x = :t\/—, (—J;,q+2pJ;)
YW P)=p"=3p* +g=g-2p", /\ / ¥
W~ pP)==p+3p* 4 g=g+2p"2. / o~
(\/;,q-2p\/;]
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Hence

y(-J; y=g+2 pﬁ is the point of maximum,
y(J; y=g-2 pJ; is the point of minimum.

(ii) Itis clear that the roots of the equation x> —3px+q =0 are all real if and only

if the following system of equations holds

g+2p¥*>0
q—2p3/2<0’

that is, the point of maximum must be above the x-axis, and the point of minimum is

to be situated below the x-axis. Hence —2p*? <g <2p** = |¢|<2p** = ¢* <4p.

2 Solution

4 1 1
R S [y | o ol
J—-[x_Hde J—Ix+1+f ﬁlnlx+1—«/§_l——«/§1nlx+l+ 2|=

«/51 x+1- \/_
x+1+42}
Inx 1 1 -1

() Let [ = j——dx U=—= x=—= dx——du,
+1 x u

1
X=—=du=a,x=a=>u=—.
a a

o 1278 (e g

a—+1 “
u

I=-1=2]=0=1=0.

@ g by g, 1, = (1) de= 1] - fm(-2e)1- )" =
0

0

2n [ {1 2) " dr = -2n [ (1- 22 - 11— £7) e =

0 0
1 ]

“2n [(1-x*)'dx+2n[(1-*) " dx =

0 0
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2n
2n+1

—2nl +2nl . Hence I =-2nl +2nl =1 =

22 (nl)’

(2n+1)!

n—-1"

To prove that [ =

for n > 1, we use the induction.

Define the statement S(n): I, = ’—, n>1.
(2n+1)!

1 37
Consider S(1): n=1, I, :J(l—xz)dx:[x—x—J =Z,but
0 0

2n 2 2 L .
32—("—!1)‘ = % = % = S(1) is true. Let k be a positive integer. If S(k) is true, then
(2n+ )'n=1 ! ,

Consider

S(k+1).

2k+1) o 2(k+1) 2%(kY)
2k+1)+1* 2k+3 (2k+1)!

If S(k) is trué, we get [, =

2k +1)(2k+2) 2#(k)  2(k+1) 2% (k) 22 ((k+1))
k+3)2k+2) (k+1)1  (2k+3)t  (2(k+D)+1)!

k+1

226 ((k + 1))’

(1))

Hence for all positive integers k, S(k) true implies that S(k + 1) is true. But S(l) is

true, therefore by induction, § (n) is true for all positive integers n.

for n2>1.
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3 Solution
(i) The line AP has

equation
btan0
Y= oot Y

Since the point Q lies on

the liner AP, then

_ btan® (x, —a)
% a(sec-1) ' '

Since the point Q lies on

the asymptote y= :lz—x , then Y, = %xl . Therefore
acos 0
tan @ atan® 2
x, = ——(x, —a) = x, = = and
: (secG—l)( 1= a) ' tan@—secO+1 6 .0
cos— —sin—
2 2
bcos i a cosg b cosg
y, = _6—2—_9 Thus the point @ has coordinates 5 2 g 2 5
cos——sin— cos——sin— cos——sin—
2 2 2 2 2 2
— . , . btan© . . .
Similarly the line A’P has equation y = m(x+a). Since the point R lies
a(sec
btan®

ontheline A’P,then y, = +a).

a(secO+1)

Since the point R lies on the asymptote y:éx, then 1y, =2x2. So
a a

tan 0 —atan® asinzy

- -+ = =
2 (sec6+1)(x2 @)= % tan —secB -1

85 o and
cos— —sin—
2 2

. 0 . 0 . 0

bsin— asin— bsin—
y, = _6—_2_—9— Thus the point R has coordinates 5 2 s 2 5
cos— — sin— COS— —Ssin— cos— — sin—
2 2 2 2 2 2
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(ii)

a~l cos— —sin— b’} cos— ~sin—
\ 2 2 2 2 )

R =(x, —x,)  +(y, - y,)* = + =a’+b2.
e b ' ( 6 .e)z ( 6 .e)z
COS— —Sin— COS— —Sin—
2 2 2 2

Thus the length of QR is Ya® +b* and hence is independent of 6. The area of the

triangle PQR is -}Z--QR-h where h is the height of the triangle. Since A is the

distance from . P(asec9,btanB) to the line y= ﬁ X, then
a

2 asec®—btan9

ba[sec 6 —tan Gl

+

balsec 6 — tan 6|

Va® + b’

. Therefore the area of the triangle PQR is

a’+b*-

- = —ablsec 0 — tan 6[

2

4 Solution

(a) If ,B,and y satisfy x*+ px+¢ =0, then a’,$?,and y* satisfy
(x1/2)3+px1/2+q:0'

Rearrangement gives x"*(x+ p)=—gq.

‘Squaring gives x(x+ p)2 =q°.

Simplifying, we get x’+2px*+ p*x—g*=0.

(b) Let z =cosq +ising. Then by DeMoivre's theorem, z* = cos40 + isin46 . But by

s (4
the Binomial theorem, z* = Z(k) i* sin“ @ cos*™ 8. Equating real and imaginary

k=0

4 4 4
cos40=| |cos*O+ (— sin’ 6)0032 0+| |[sin*@,
| 0 2 4

. 4 - 3 4 . 3
sin40 = sinBcos” 8+ (— sin 8)0058.
1 3

parts,
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Hence

_sin40 _ 4sinBcos’0—4sin’Bcos® 0 4tan0-4tan’0

tan 46 =— — 3 an40 = > v
cos40 cos 0—6sin“0cos"O+sin” O 1-6tan“6+tan” 0

(D

(i) tand8=1= 406 =tan'1+mn, n integer, = 49=-§+1‘m, n=0,%1,+2,.=

_m(4n+1)
S 16

0 , n integral. (2)

(ii) Let tan6 = x. Then from (1) -

_ 3
tan46=l¢>14z Xl Xt +ax - 62 —dx +1=0.
-0Xx" +x
dn+1
Hence from (2) x = tanm—), n=0,t1,£2,... But of these there are only four

16
distinct non-zero values: ¢, = tan lltg B =tan in, Y =-—tan —3—1t, d=-tan lln .

16 16

a,B,vand § are the roots of x*+4x>—6x?—4x+1=0. Hence, Za=—4 and
Y op=-6= (20()2 = (—4)2 = Y a’+2) of=16= Y a*=16-2-(-6).

5 3 7
So (0 + B2 +v2 +8?) =28 and hence tan®-—~ + tan?—- 1t + tan® —-T¢ + tan? —— 1 = 28..
o (a2 +B+77+8Y) 16 16 TR

5 Solution

(@ @) z= ~1+if3 = 2(—%“?] = 2(cosz—;r-+isin—2§n—).

(ii) Z =2 co 2 +isin _2n , , by
3 3

2 =4 co —3’3)+isin(_gﬁ) , o

L 3 3)] < »
1_1f 2r) .. ( 2m)]
—=—|co§f —— |+1IsIn] —— ||.
z 2] { 3) ( 31 0

R
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(b) (,ii) Let P(z)=2>+(2+i)z+k;
P(1-2i)=0= (1-2i) +(2+i)(1-2i)+k=0= k=-1+7i.
If z=1-2i and w is another root of P(z), then

~1+7i )
= w=-3+1.

Zw=k=>w=

1-2i

(©)
A slice taken perpendicular to the axis
of rotation is an annulus of thickness

Sy Wl[h radii Ti(y), rz()’): Where
r,(y)>nr(y) and #(y), r(y) are the

roots of y= 4r* — r* considered as a
biquadratic equation. The slice has
volume 8V = 11:(r22 — r,z)Sy :

y=4r2—r4

rr=z
22-4z+y=0

4
% =gin})§4:2n1/4— ydy= 211:"‘1/4- ydy.
7 y=0 0

Substitution y=4-y’, dy=-dy gives

132

; ° 32
V=-—21tj\/—)7dy'=—21t[y ]———“.
4

3/2), 3

the volume of the solid is —323—n cubic units.

6 Solution
Choose T as a positive direction. Choose the center of the earth as origin.

—gR2
xt

Equation of motion: X =

Initial conditions: t=0,x=R,v=V.

2 2 2 2
(i) Relation between x and v: v%:—— gR = vdv=— gR dx:>v7+C=—‘gR—, C

2 2
X X X

constant.
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2

x=Ryv=V= C=-—-%—+gR.As V =./gR, we have

v=JgR 2R (1)

(i) v=0= from (1) x =2R. Hence the projectile reaches the height R above the

surface of the earth.

From the equation of motion %z——ng—. 2)
x
2 2\?
But from (1) x = gigfvz . Substituting this into (2), % = -gR’ (gfg;f ] =
rR+v?) _
é»_:_(g -H;) = dt,: dv == t2+A= ————dv——7 A constant.
dt 4gR 4¢gR" (gR+v2) 4gR (gR+v2)
dv dv 1 1
Let us calculate [ = | ——, azm; ———=— | ————dv=
j a2+v2)- 'f(a2+v2)2 a‘*j 1 (V)z 2
+ —_—
a
1 via
L ( )2 v
v
(1+(—)J
a
v 1 du
Let u=—=JI=—
a a3j(l+uz)2
But
22 2 2y
J du 5= 1+u L;d =J lzdu—J “ 2du——-tan"u— —Li——(ﬁ)——du=
(1+u2) 7(1+u2) I+ u (1+ ) 2(1+L42)
tan_‘u+j£‘-( l,)duz
2\1+u’
tan"u+£‘---——l—7—lj—l—7du=tan"u+———£—-,———ltan"u:>
2 1+ 27 1+4° 21+u*) 2
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v v 1 v/ia
u=—=1= 7 tan +—5- 3
a a a a v
2(14‘—?]
a
I—Ltan"—+ Y a=./gR
24’ a 2az(a2 + vz),
—t . 1 Y v
Hence +A tan

4R 7_(_gR)3’2 Jer ¥ 2gR(gR+V*) ;

1 -l 1
t=0, =,/ R=> A=———tan 1+ =
veVe 2( gR)y2 2y gR (gR+gR)
Y 1 1
A=—. + =
4 2(gR)3/2 4(gR)3/2

A= 4(g1112)3’2 G ’ 1)'

. : 4 2
v=0= from (3)t=A-4gR* = t:(E+1)-——g—R——:> t=(£+1).\/g.
| ‘ 2 4(gR)gR 2 g

7 Solution

(a) Let O be the center of the circle, and r be its radius

A ACB is similar to ACDB . From here

AD_CD
CD BD

AD=g, BD=b= CD=+/ab.

= CD*=AD-BD;

(ii) AB=2r=r= ﬁ—;—b; OC =r and the triangle CDO is rectangular

= 0C>CD=> r>\/E:> a—;é>\/£.

(i) Consider the rectangular triangles ACB and CDB.

3)

These triangles have the common angle £ CAB. Hence
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(b) In order to prove that L, M and N are collinear, it is sufficient to show that
ZLMA = ZNMB. For this purpose we show, that

P /LS ZNMB= /BPN = ZSPA=ZLMA.

The first step: £ NMB = ZBPN. The triangles PEM and

BEN are right-angular and ZPEM = ZBEN = APEM is

C similar to ABEN = EE =——. But
PE ME

ZPEB = ZMEN = A PEB is similar to A MEN = ZNMB = ZBPN.

The second step: ZBPN = ZSPA . The point P lies on the circle = PACB is a cyclic
quadrilateral = ZPAC+ £ZPBC=180°. But ZPAC+ ZPAL =180°. Hence

£PBC = ZPAL. From here, as the triangles PNB and PLA are right-angular, we
have A PNB is similar to APLA = ZBPN=ZAPL.

The third step: ZSPA = ZLMA . It is obvious that A ALS is similar to A PMS, as

Ms

these right-angular triangles have the common angle £PSM . Hence {% = S =

AMLS is similar to APAS = ZSPA=/ZLMA.

8 Solution

Ay Y Y !
(a) (a+—-) =(a——) +4=>(a+—-) 24 = a+—2>2 (equality iff
a a a a

azl, le.a=1);

Pt D)= @) (et ) o= a-1)

a a a a a a

-1 Zra+1 2 1
(a—l)ﬁa—-z—)= (a—l)(a—l)(—a-—-*;—)-=(a—l)2£i—t;—t—)20=> az+L22a+l
a a a a a

with equality iff a=1.
(b) () If o, are roots of x’—x+1=0,then o.+B=1and af =1 by Vieta’s

theorem. Hence (0L+[3)2 =1= a’+p*=1-20= o’ +B*=-1,

A=a"+B" =" a+B"" B,

n
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a+B=1=a=1-B and B=1~a.Hence A, ="' (1-B)+p""'(I-a)=

A, =0 B~ BB o= A=A - oc[fi(oz"'2 + B"'z) cof=1=

A=A_-A_ forn>3.

(ii) Define the statement § (n) CA = 2005”—;— forn>1.
Consider S(1): n=1, A :2cos%= 1= (1) is true.

Consider §(2): n=2, A, =2cosi23£=—1:> 5(2) is true.

Let k be a positive integer, k=2 . If S(n) is true for all integer n < k , then

A =2cos—n3—n n=123..k.

Consider S(k+1).If S(n) istrue for n=1,2,3..k, we get A, =A, —A,_ =

2cos—k7—t—2cos(k~1)n =2 cosE—2cos (k —Dr .
3 3 3 3

* b)sin(—b—;—a), abe R.

. [a
But cosa—cosh= ZSln(

2k -1
Hence A,,, =4sin ( )-E sin 1z = Ak+,=—4sin£sin k—-l— I
2 3 23 6 2)3

A, = —2sin((k + 1)% - g) Ay =2cos(k + 1)% .

Hence for k 22, S(n) true for all positive integers n< k implies S(k +1) is true. But

5(1),
S(2) are true.

Therefore by induction, § (n) is true for all positive integers n:

An=2cos—r% forn3 1.
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